Event-Driven Ontology Updating

Jordy Sangers, Frederik Hogenboom, and Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

jordysangers@hotmail.com, {fhogenboom, frasincar}@ese.eur.nl

Abstract. Ontologies, as reliable resources in decision making processes,
need to be accurate and up-to-date. For this purpose, ontologies have to
be maintained regularly. Manual updating is tedious and time consum-
ing, therefore we propose an event-driven automated ontology updating
approach. The Ontology Update Language (OUL) and our proposed ex-
tensions are inspired by the existing SQL-triggers mechanism and make
use of SPARQL and SPARQL/Update statements. We propose differ-
ent execution models, providing flexibility with respect to the update
process. As a proof-of-concept, we implement the language and its ex-
ecution models in the Hermes News Portal (HNP), an ontology-based
news personalization service.

1 Introduction

One of the most important driving factors for information in today’s society
is news. Every day, millions of people try to keep up-to-date with the latest
developments by reading news items. Next to television and newspapers, the
World Wide Web has become a good alternative for people to keep track of the
state of the world. Developments in the real world — described in news items
— influence a variety of activities, ranging from individual daily activities such
as buying products to companies’ long-term business strategies. Lately, there
has been an increasing amount of effort put into automatically processing news
data by extracting important information. Applications that make use of this
information are plentiful, e.g., automated stock agents that keep track of financial
news to exploit extracted knowledge on the stock market, news personalization
services that provide users with information that matches user interests, etc.

Traditionally, news is presented as plain text and can be characterized as
unstructured data, making it hard for computer systems to interpret it. With the
Semantic Web, the World Wide Web Consortium (W3C) provides a framework
to add structure to data through the usage of the Web Ontology Language
(OWL) [1]. By means of ontologies, domain specific knowledge can be represented
by creating concepts and relations between these concepts. The relations are
established by defining triples that consist of a subject, a predicate, and an
object.

With structured data, information can be easily extracted, and interoperabil-
ity between computer systems is stimulated. This information, often described
using ontologies, is used as an information source that influences the systems’
actions. Due to the non-static nature of our society, the information that re-
flects the real world at any given time has to be updated regularly. Traditional
data sources like relational databases have mechanisms for automatic updates.
However, a principled way of automatic ontology updating does not yet exist.
This forces domain experts to manually update ontologies, which is a tedious,
repetitive, error-prone, and time-consuming job.

Numerous applications, like the Hermes News Portal [7] (an ontology-based
news personalization service) take advantage of Web news items by exploiting
their information through ontology matching. As a classification and querying
tool, it is important that the ontology contains up-to-date information. However,
such tools often lack an update language for maintaining underlying ontologies
and would therefore benefit from an ontology update language. Hence, we pro-
pose the use of the event-triggered Ontology Update Language (OUL), where
events are defined as phenomena requiring a knowledge base to be updated. In
this paper we hypothesize that the language could be extended with techniques
from active databases, i.e., with features like prefixes and negation, and also by
defining various update execution mechanisms.

2 Related Work

Due to the recent explosion in (meta-)data representation technologies, infor-
mation can be described in many ways. One way to do this is by making use
of relational databases, which store information in tables related to each other.
Additionally, the eXtensible Markup Language (XML) [3] can describe the in-
formation in a tree-structure, a common way for transportation of information
between systems. Last, semantic languages for storing information exist. The Re-
source Description Framework (RDF) [4] adds meaning to data by using triples
and can be serialized in XML. OWL extends RDF with the possibility to express
additional constraints and is often used as an ontology representation language.
Common languages for retrieving information from sources are the Structured
Query Language (SQL) [5] for relational databases, XPath [6] and XQuery [2] for
XML documents, and SPARQL [11] for RDF and OWL. Although SQL is mainly
used for querying information from tables, extra functionalities have been added
to it, such as the creation, alteration, and removal of tables. These statements can
be executed individually, but can also be used in combination with SQL triggers.
These triggers react on predefined events based on an Event-Condition-Action
model and execute SQL statements either immediately or deferred if a condition
is met, hereby creating an automated way of updating relational databases.
Updating XML documents can be realized with XUpdate [9], and updating
ontologies is usually done with SPARQL/Update statements [13]. These state-
ments are similar to SPARQL queries, though specifically designed for updating
ontologies. Due to the complexity of ontology updating caused by dependencies

and physical distributions, we need a principled approach for automatic ontol-
ogy updating. The Ontology Update Language (OUL) [10] is a blend of active
(database) triggers and SPARQL/Update statements, which updates ontologies
in an event-driven manner. By defining so-called changehandlers, specific ontol-
ogy change events can be caught and handled individually.

Despite the convenient representation aspects of OUL inspired from active
database triggers, the usage of SPARQL and SPARQL/Update, and the imple-
mentation of preconditions, the language lacks several key features. First, OUL
does not support negation and namespaces. Second, chaining of triggers (change-
handlers) is not possible. The changehandlers do not react on actions of other
changehandlers. In order to trigger a changehandler, the user has to manually ex-
ecute an update. Third, there is no differentiation between the order of execution
of changehandlers’ actions, i.e., there is no distinction between immediate (i.e.,
once a changehandler is matched, it is executed) and deferred (i.e., the actions
are executed all at once after matching the changehandlers and collecting the
actions) executions. Fourth, only the first matching changehandler is executed.
Hence, when an event occurs, each changehandler is matched against the event;
the first changehandler that matches, is handled. Additionally, when updates
are triggered and executed, new updates could be triggered, requiring another
update cycle. This kind of execution looping is currently not supported.

3 OUL Syntax

Atomic ontology update actions can be executed using SPARQL/Update state-
ments. However, multiple ontology change actions are often required. These ac-
tions are hard to express in one single SPARQL/Update statement and can not
be edited easily. Therefore, complex ontology updates should be performed as
a sequence of atomic SPARQL/Update statements executed in a specific order.
The Ontology Update Language (OUL) [10] is based on the automatic update
mechanism in active databases: SQL-triggers. Using an Event-Condition-Action
model, a list of ontology update actions are performed on event occurrence. This
method, using triggers (called changehandlers here), however, does not support
a fully automated ontology update process. OUL does feature a dynamic update
process using an existing RDF update language, and hence we extend this lan-
guage in such a way that no human intervention is needed for multiple updates.
OUL makes use of changehandlers that perform SPARQL/Update actions
whenever a certain change event (represented as an RDF-graph that is either
added to or deleted from the ontology) occurs. If we want to perform particular
actions, whenever such triple is added to or deleted from the ontology, we can
specify them in a changehandler. Each changehandler has a general form as:

CREATE CHANGEHANDLER <name>
FOR <changerequest>
AS
[IF <precondition>
THEN] <actions>

which is analogous to active database triggers. When the changerequest matches
the change event, a precondition on the ontologies is checked. If this precondition
is met or if no precondition has been defined, a list of actions will be executed.
In contrast to active databases, ontology updates do not require SQL state-
ments, but events, conditions, and actions have to be defined using SPARQL
and SPARQL/Update statements.

3.1 Requesting Changes

OUL defines two different types of changerequests, i.e., insertion and deletion of
information. The add and delete keywords distinguish between the two different
types and every changerequest is further defined by a WHERE-clause of a SPARQL
SELECT query. The syntax is defined as:

<changerequest> ::== add [unique] (<SPARQL>)
| delete [unique] (<SPARQL>)
<SPARQL> = WHERE clause of a SPARQL SELECT query

When all the triples in the query can be deduced from a change event and
the event-type matches the changerequests’ type, the changerequest is matched.
The set of bindings that are returned from the query can be reused later in the
AS-clause of the changehandler definition. A unique property can be used to
state whether only one single binding is required. Whenever this property is set,
changerequests will not match when their query returns multiple bindings.

3.2 Preconditions

Whenever a changerequest matches, also optional preconditions defined in the
changehandler have to be met so that the actions are executed. In contrast to the
changerequest, which is used to match the occurring event, the precondition is
used to check the current state of the ontology. Three different types of precon-
ditions can be used. First, contains checks whether the ontology contains a set
of triples. Second, entails checks whether the ontology entails a set of triples,
i.e., using inferencing it can be concluded that the statement is logically entailed
by the ontology. Third, entailsChanged checks whether the direct application
of the requested change leads to an ontology which entails a set of triples.

Conditions can be combined by and- or or-operators and can be nested as
well. Each precondition results in a set of bindings and the and- and or-operators
perform join and union operations on the resulting bindings. The syntax for the
precondition is defined as follows:

<precondition> ::== contains(<SPARQL>)

| entails(<SPARQL>)

| entailsChanged (<SPARQL>)

| (<precondition>)

| <precondition> and <precondition>

| <precondition> or <precondition>
<SPARQL> ::== WHERE clause of a SPARQL SELECT query

3.3 Actions

When the changerequest is matched and the precondition is met, a list of ac-
tions is executed. Actions make use of the binding information that resulted
from matching the changerequest and the precondition. There are four types of
actions, i.e., SPARQL/Update queries, feedback actions that give feedback to
the user using text containing bounded variables, applyRequest actions that
execute the events caught by the changehandler, and last, the for actions that
iteratively execute a set of actions with binding information from a for-condition:

<actions> ::== [<action>] |<action><actions>
<action> ::== <SPARQL update>
| for(<precondition>) <actions> end;
| feedback(<text>)
| applyRequest
<SPARQL update> ::== a MODIFY action (in SPARQL/Update)
<text> ::== string (may contain SPARQL variables)

3.4 Extensions

In SPARQL it is possible to define prefixes, i.e., labels referring to a namespace.
Since in OUL multiple SPARQL WHERE clauses and SPARQL/Update MODIFY
clauses may be used, it is necessary to define in each query the used prefixes or
to use the full namespaces. The latter provides too much overhead and hence, we
propose to define the prefixes for the entire changehandler instead of for every
separate SPARQL query.

In OUL, preconditions can be combined by using or- or and-operators. It is,
however, not possible to use negation, something that could be desirable when-
ever ontologies should not contain certain information. Therefore, we implement
negation by allowing the usage of an exclamation mark (‘!") to denote negation
in OUL. The syntax is altered as follows:

CREATE CHANGEHANDLER <name>
[<prefixes>]
FOR <changerequest>
AS
[IF <precondition>
THEN] <actions>

<prefixes> ::== <prefix>[<prefixes>]
<prefix> ::== <SPARQL prefix>
<changerequest> ::== add [unique] (<SPARQL>)

| delete [unique] (<SPARQL>)
<precondition> ::== contains(<SPARQL>)

| entails(<SPARQL>)

| entailsChanged (<SPARQL>)

| (<precondition>)

|

<precondition> and <precondition>

| <precondition> or <precondition>
| !<precondition>

<actions> ::== [<action>] |<action><actions>
<action> ::== <SPARQL update>

for(<precondition>) <actions> end;

|
| feedback(<text>)
|

applyRequest
<SPARQL prefix> ::== PREFIX statement of a SPARQL query
<SPARQL> ::== WHERE clause of a SPARQL SELECT query
<SPARQL update> ::== a MODIFY action (in SPARQL/Update)
<text> ::== string (may contain SPARQL variables)

4 OUL Execution Models

Updating ontologies in an event-driven manner requires an execution model that
controls aspects like selecting the proper changehandlers, executing SPARQL
queries, and performing changehandler actions. In [10], the authors provide an
execution environment for OUL that allows for ontology updating upon detec-
tion of change events in texts. The Ontology Update Manager plays a central role
here, as it matches changehandlers based on a changerequest and executes the ac-
tions defined in the respective changehandlers. The ontology update specification
describes how the ontology can be updated by providing a set of changehandlers.
By default, whenever a change event occurs, all changehandlers defined in
the ontology update specification are checked upon their changerequest and pre-
condition to determine if the change event can be handled by a specific change-
handler. When a changehandler matches a changerequest with a change event
and the precondition is met, the original change event is replaced by the ac-
tions defined in the matching changehandler. These actions are then stored and
executed all at once later on, i.e., in a deferred manner. In situations where mul-
tiple changehandlers match a change event and meet their precondition, only the
actions of the first matching changehandler are executed. As OUL does not fea-
ture chaining of changehandlers, the execution of the actions cannot trigger other
changehandlers, implying that immediate execution would have the same results
as deferred execution, when executing only the first matched changehandler.
With respect to the original OUL execution model, we propose several ex-
tensions. First, inspired by applications in active databases, we extend OUL
by adding support for immediate updating, as opposed to deferred updating.
Next, in analogy with active databases where triggers can activate other trig-
gers, we add changehandler chaining. Although this does not ensure termination,
it enhances the expressivity of the update language and it enables separation
of atomic update operations, thereby enabling modularity. Similarly to active
databases triggers, methods for automatic termination evaluation can be devel-
oped [12]. Additionally, execution looping is added, which is needed in situations
where new updates are required after triggering and executing other updates.
Last, we update the OUL execution model in a way that it does not only execute
the first matching changehandler, but optionally each matched changehandler.

4.1 Deferred and Immediate Updates

The original (deferred) execution model of OUL comprises three main steps,
which are illustrated in Algorithm 1. First, changerequests of all defined change-
handlers with respect to the change event are matched and preconditions are
verified. Second, actions are collected from the matched changehandlers and
SPARQL/Update statements are created. Third and last, the latter statements
are applied to the ontology. Note that the method matchHandlers(...) is further
specified in Algorithms 3 (first match) and 4 (all matches), and
collectUpdates(. . .) is described in Algorithm 5.

This execution model can be altered in such a way that immediate updating
is performed. This implies that during the collection process, update statements
are applied immediately to the ontology. Hence, in contrast to deferred updat-
ing, we distinguish between two steps, i.e., changehandler matching and update
application. Algorithm 2 provides the immediate updating model. Note that the
method matchHandlers(...) is further specified in Algorithms 3 (first match)
and 4 (all matches), and applyUpdates(...), which applies updates, is described
in Algorithm 6.

4.2 First and All Matching Changehandlers

There are two distinct ways of matching changehandlers. The OUL execution
model proposed in [10] returns the first changehandler that matches a chang-
erequest and meets its precondition (Algorithm 3). An iterator moves forward
through the ontology update specification document until either the end of
the document has been reached or a changehandler has been matched to the
change event. The matching process returns non-empty binding information
which should contain a single binding when a unique keyword is used in the
changerequest. For matching preconditions, in case a valid binding is returned,
the changehandler is added to the list of matched changehandlers.

However, one could also require multiple changehandlers to be matched.
When altering Algorithm 3 by changing the loop conditions, we obtain an exe-
cution model that returns all matching changehandlers associated with a change
event as given in Algorithm 4. While in Algorithm 3 in line 2 a condition for
limiting the list of matched changehandlers is defined, in Algorithm 4, this is
removed, making it possible to check all changehandlers defined in the ontology
update specification and to add every matching changehandler to the resulting
list.

4.3 Chaining Updates

After matching the changehandlers (either the first changehandler encountered,
or all changehandlers), their associated update statements have to be collected
and applied. This stage depends on the type of execution mechanism. In case
deferred execution is applied, all update statements from the matched change-
handlers have to be collected before executing them. When immediate execution
is used, the statements have to be executed while inspecting them.

Algorithm 1 Deferred ontology updating (updateOntology)

Description: Update ontology with deferred execution of updates
Input: ontology O consisting of axioms,
change event op(Axz) where op € {add, del} and Az is a set of axioms
Data: matchedHandlers changehandlers that match their changerequest and meet their precondition
according to the provided change event,
updateList list of update actions to be applied to the ontology
Output: updated ontology O
. // Find matched changehandlers
. matchedHandlers < matchHandlers(O, op(Ax))
// Collect updates from changehandlers
updateList < collectUpdates(O, op(Ax), matchedHandlers)
// Apply updates to ontology in deferred way
for all update € updateList do
apply update to O
end for
return O

Algorithm 2 Immediate ontology updating (updateOntology)

Description: Update ontology with immediate execution of updates
Input: ontology O consisting of axioms,

change event op(Ax) where op € {add, del} and Az is a set of axioms
Data: matchedHandlers changehandlers that match their changerequest and meet their precondition
according to the provided change event

Output: updated ontology O

: // Find matched changehandlers

. matchedHandlers <— matchHandlers(O, op(Ax))

1 // Apply updates to ontology in an immediate way

. O < applyUpdates(O, op(Ax), matchedHandlers)

. return O

U W N =

Algorithm 3 Returning the first matching changehandler (matchHandlers)

Description: Collect matching changehandlers
Input: ontology O consisting of axioms,
ontology update specification US treated as a list of changehandlers,
change event op(Axz) where op € {add, del} and Az is a set of axioms.
Data: handler changehandler that is checked for applicability
Output: list of matched changehandlers matchingHandler
1: // While not at document’s end and no changehandler has been matched
2: while not US.endOfDocument and matchingHandlers.count < 1 do
: // Take the next changehandler

3:
4 handler < US.nextChangeHandler

5: // Match the changerequest with the change event

6: matches < SPARQLmatch(handler.changerequest, op(Ax))

7: // The bindings form the changerequest should not be empty

8 if not matches.isEmpty then

9 // The number of bindings should be 1 when the unique keyword is used

10: if (handler.changerequest.unique and matches.count == 1) or not
handler.changerequest.unique then

11: // Substitute variables in the precondition with changerequest bindings

12: instPrecondition < substitute(handler.precondition, matches. first)

13: // Evaluate the precondition. When this returns any binding, it is met

14: if not evaluate(instPrecondition,O).isEmpty then

15: // Add the changehandler to the list

16: matchingHandlers.add(handler)

17: end if

18: end if

19: end if

20: end while
21: // Return the list of matched changehandlers
22: return matchingHandlers

Algorithm 4 Returning all matching changehandlers (matchHandlers)

Description: Collect matching changehandlers
Input: ontology O consisting of axioms,
ontology update specification US treated as a list of changehandlers,
change event op(Axz) where op € {add, del} and Az is a set of axioms.
Data: handler changehandler that is checked for applicability
Output: list of matched changehandlers matchingHandler
1: // While not at document’s end
2: while not US.endOfDocument do

: // Take the next changehandler
4 handler <+ US.nextChangeH andler
5: // Match the changerequest with the change event
6: matches < SPARQLmatch(handler.changerequest, op(Ax))
7 // The bindings form the changerequest should not be empty
8 if not matches.isEmpty then
9 // The number of bindings should be 1 when the unique keyword is used

10: if (handler.changerequest.unique and matches.count == 1) or
handler.changerequest.unique then

11: // Substitute variables in the precondition with changerequest bindings

12: instPrecondition < substitute(handler.precondition, matches. first)

13: // Evaluate the precondition. When this returns any binding, it is met

14: if not evaluate(instPrecondition,O).isEmpty then

15: // Add the changehandler to the list

16: matchingHandlers.add(handler)

17: end if

18: end if

19: end if

20: end while
21: // Return the list of matched changehandlers
22: return matchingHandlers

not

Algorithm 5 Update collection from matched changehandlers (collectUpdates)

Description: Collect updates from a list of matched changehandlers using deferred execution
Input: ontology O consisting of axioms,

change event op(Az) where op € {add, del} and Az is a set of axioms,

list of changehandlers matchedHandlers that match the change event

Output: list of the update statements updateList

1: // Check whether any changehandler matches the change event

2: if not matchedHandlers.isEmpty() then

3 // Loop through all matched changehandlers

4 for all matchedHandler € matchedHandlers do

5: // Loop through all update statements in the changehandler

6: for all update € matchedHandler.updates do

E7g // Chaining: add the update or the replaced update actions from other

9

// changehandlers to the list of update statements

: // Find changehandlers that match the update event
10: newMatchedHandlers <— matchHandlers(O, update)
11: // Collect updates from changehandlers
12: newUpdateList < collectUpdates(O, update, newMatchedHandlers)
13: // Add the update statements to the list
14: updateList.add(newUpdateList)
15: end for
16: end for
17: else
18: // There is no changehandler matching the change event; therefore, the change
19: // event itself is added to the list of update statements
20: updateList.add(op(Ax))
21: end if

22: // Return the list of update statements
23: return updateList

The earlier introduced Algorithm 1 defines the execution steps of the deferred
execution model. In the first step, update collection, statements are collected
from the matched changehandlers. Algorithm 5 explains how this task is per-
formed. First, a check is done to investigate whether any changehandlers match
the change event. If this is the case, the update statements from every change-
handler in the set of matched changehandlers are collected. If no changehandler
matches the change event, the change event itself is applied to the ontology. In
lines 7-14, each update statement is treated as a change event, representing the
implementation of chaining. This part is similar to Algorithm 1, except for the
fact that updates are not applied to the ontology, because this has to happen at
the end of the process when using deferred execution. In the end, the algorithm
returns a list of update statements that need to be applied to the ontology.

As depicted in Algorithm 6, for immediate ontology updating, no update
lists are returned. In contrast to deferred updating, the updates are immedi-
ately applied to the ontology. For immediate updating, the algorithm first checks
whether any changehandler exists in the list of matched changehandlers. If this
is the case, for each update statement in each of the matched changehandlers,
a change event is fired as shown in Algorithm 2 using the update as the change
event. In this way, we provide a mechanism for chaining. If no changehandler
matches the change event, the change event itself is applied to the ontology.

4.4 Looping Updates

Applying updates to the ontology and thereby changing the ontology can trigger
new changehandlers to become matched, which can be used for applying addi-
tional updates in case the event is handled more than once. Hence, we introduce
the possibility to iterate over the changehandlers with the same event and apply
updates until there are no matching changehandlers left. In this way, the effect
of the update actions can be checked and additional updates can be applied.

Ontology update looping can be implemented by adding a call to the
updateOntology(. ..) methods of Algorithms 1 (deferred) and 2 (immediate) at
the end of both algorithms, using the same change event and ontology as input.
Algorithms 7 and 8 implement looping for deferred and immediate executions,
respectively. Before the updated ontology is returned, in both algorithms the
updateOntology(. . .) method is called recursively to ensure that additional up-
dates are handled until no updates are available.

5 Implementation

OUL, including the proposed extensions, has been implemented as a stand-
alone software package providing event-driven ontology updates (available at
http://people.few.eur.nl/fhogenboom/oulx.html). We used this package
in the Hermes News Portal [7], a Java-based news personalization tool imple-
menting the Hermes framework [7]. Hermes uses an ontology for classifying and
querying news items. The Hermes domain ontology has to be up-to-date with the

Algorithm 6 Update application from matched changehandlers (applyUpdates)

Description: Apply updates from a list of matched changehandlers using immediate execution
Input: ontology O consisting of axioms,

change event op(Axz) where op € {add, del} and Az is a set of axioms,
list of changehandlers matchedHandlers that match the change event
Output: updated ontology O

1: // Check whether any changehandler matches the change event

2: if not matchedHandlers.isEmpty() then

3 // Loop through all matched changehandlers

4: for all matchedHandler € matchedHandlers do

g: // Loop through all update statements in the changehandler
7

8

9

for all update € matchedHandler.updates do
// Chaining: fire the update as an update event; this way, the update can

// be handled by appropriate changehandlers
: updateOntology(update)
10: end for
11: end for
12: else
13: // There is no changehandler matching the change event; therefore, the change

14: // event itself is applied
15: apply op(Azx) to O

16: end if

17: return O

Algorithm 7 Looped deferred ontology updating (updateOntology)

Description: Update ontology with deferred execution of updates and looping

Input: ontology O consisting of axioms,

change event op(Axz) where op € {add, del} and Az is a set of axioms

Data: matchedHandlers changehandlers that match their changerequest and meet their precondition
according to the provided change event,

updatelList list of update actions to be applied to the ontology

Output: updated ontology O

1: // Find matched changehandlers

2: matchedHandlers < matchHandlers(O, op(Ax))

3: // Collect updates from changehandlers

4: updateList < collectUpdates(O, op(Axz), matched Handlers)

g: // Apply updates to ontology in deferred way
7
8
9

. for all update € updateList do
: apply update to O
. end for
: // Execute this algorithm again to check for additional updates
10: if not matchedHandlers.isEmpty() then
11: updateOntology(O, op(Ax))
12: end if
13: return O

Algorithm 8 Looped immediate ontology updating (updateOntology)

Description: Update ontology with immediate execution of updates and looping

Input: ontology O consisting of axioms,

change event op(Axz) where op € {add, del} and Az is a set of axioms

Data: matchedHandlers changehandlers that match their changerequest and meet their precondition
according to the provided change event

Output: updated ontology O

. // Find matched changehandlers
matchedHandlers < matchHandlers(O, op(Ax))
// Apply updates to ontology in an immediate way
O <+ applyUpdates(O, op(Azx), matchedHandlers)
// Execute this algorithm again to check for additional updates
if not matchedHandlers.isEmpty() then
updateOntology(O, op(Ax))
end if
. return O

latest news and hence needs automatic ontology updates. Based on the informa-
tion extraction plugin for the Hermes News Portal, i.e., Aethalides, information
extracted from news items can be used for updating the ontology.

A key aspect of the Hermes News Portal is its financial ontology. For its up-
dates, the ontology is dependent on information extracted from financial news
messages, e.g., product releases, CEO appointments, bankruptcies, etc. We im-
plement the OUL update mechanisms and connect them to the information
extraction processes of Aethalides. The Aethalides plugin makes use of the Her-
mes Information Extraction Engine, which is used for matching user-created
information extraction rules with text in news items.

To integrate automatic ontology updating, each new news item is processed
and information (in the form of events) is extracted using the user-created rules.
After validating the extracted information, the ontology is updated using OUL
update rules. In our implementation, the execution of the SPARQL WHERE clauses
and the SPARQL/Update statements, as well as ontology updating is performed
using Jena [8]. In order to work with the latest developments in the Semantic
Web, we updated ARQ, the query engine in Jena, to version 2.8.8, which fea-
tures SPARQL 1.1. The changehandlers can be loaded via a plain text file that
contains changehandlers specified in the proposed syntax. Parsing and compiling
of changehandlers is performed via a compiler created with JavaCC [14].

6 Evaluation

In order to evaluate the extensions made to OUL, we analyze the characteristics
of each proposed execution model. As it is difficult to perform a quantitative
analysis and as there are no benchmarks available for OUL, we discuss at a
qualitative level the advantages and disadvantages of each execution model. We
assume all queries are chained (non-chained queries as originally proposed by
OUL are also supported), which provides us with eight execution models:

— Immediate, looped execution of first matching changehandler;

— Immediate, non-looped execution of first matching changehandler;
— Immediate, looped execution of all matching changehandlers;

— Immediate, non-looped execution of all matching changehandlers;
— Deferred, looped execution of first matching changehandler;

— Deferred, non-looped execution of first matching changehandler;
— Deferred, looped execution of all matching changehandlers;

— Deferred, non-looped execution of all matching changehandlers.

Deferred execution of matching changehandlers could lead to erroneous up-
dates, and hence it usually does not make sense to make use of the last four
execution models. For example, it could be the case that several changehandlers
can originally match, but after executing their corresponding updates in a de-
ferred mode, the updates of the previous matches could be made invalid. Due
to the nature of deferred execution, these updates would still be executed. On
the other hand, deferred updating could possibly lead to more efficient updates

in case multiple changes are to be made to the same entity, as these actions
could be merged and transformed into simplified update statements. Addition-
ally, duplicate actions can be merged, eliminating duplicate action executions.
So, if deferred updating is used, some caution is required, making sure there are
no conflicting dependencies between update actions and change requests.

When comparing models that execute the first matching changehandler with
those that execute all changehandlers, one could make the following observa-
tions. The latter method is computationally more intensive due to the increased
complexity on the execution mechanism. Conversely, updates are more efficient,
as in one pass all the matched changehandlers are dealt with, hence eliminating
the need for multiple user-triggered iterations.

In case of looped execution models, the advantage is that ontology updates
performed during a pass that trigger new changehandlers to be matched are
taken into account, hereby improving the efficiency of the ontology updating
process, as no separate runs are needed. The looped execution models are on the
other hand harder for users to grasp due to the repeated event generation until
no changehandler matches the event.

There is a trade-off between easiness of writing update rules and their efficient
execution. The all matching and/or looped variants are more efficient due to
the automatic execution and possible optimization of their complex actions,
while the first matching and/or non-looped counterparts are more intuitive and
thus foster easier development of update rules. Also, it should be noted that
for chaining there is an increased level of automation, as users do not have to
manually trigger updates resulting from earlier updates (as in case of the OUL
execution model), as these are automatically handled.

7 Conclusions

The Ontology Update Language (OUL) is based on SQL triggers and focuses
on an event-driven ontology update specification. By creating changehandlers,
containing an event description, a precondition, and a list of SPARQL/Update
statements, update actions are executed when events occur and preconditions
are met. OUL features the creation of Event-Condition-Action rules, hereby
enabling automatic updates. We identified some drawbacks at language as well
as execution model levels, and proposed extensions to address these.
Syntax-wise, in order to facilitate more complex expressions, we extended
OUL so that it also supports negation and prefixes. Our main contribution how-
ever lies in the extension of OUL’s execution mechanism. We incorporated im-
mediate updating, as opposed to deferred updating. Also, we added an internal
triggering mechanism for changehandlers called updates chaining, allowing for
automatic event triggering based on the matched changehandlers’ actions. This
contributes to the usability of the language by separating atomic update actions
and thus delivering modularity and an increased possibility to reuse changehan-
dlers. Also, we added support for looping for repetitive treatment of an event.
Last, it is now also possible to execute all event-related changehandlers, instead

of just the first matching handler. The here proposed extensions are viable, pro-
vided that technical experts who are accustomed to the update language work
together with experts of the knowledge domain.

As future work we would like to evaluate the termination of changehandlers,
i.e., which conditions need to be satisfied by a set of changehandlers so that,
for any incoming events, the matching changehandlers should always terminate.
For this purpose we plan to reuse results from termination of rule-based updates
for databases [12]. Alternatively, one could look into developing a principled
information extraction language that combines information extraction and on-
tology updates. For this purpose, we plan to integrate the Hermes Information
Extraction Language with OUL, including the here proposed extensions.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, 1., McGuinness, D.L., Patel-
Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference. W3C Rec-
ommendation 10 February 2004, from: http://www.w3.org/TR/owl-ref/

2. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language (Second Edition). W3C Recommendation
14 December 2010, from: http://www.w3.org/TR/xquery/

3. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensi-
ble Markup Language (XML). W3C Recommendation 26 November 2008, from:
http://www.w3.org/TR/2008/REC-xm1-20081126/

4. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation 10 February 2004, from: http://www.w3.org/TR/
rdf-schema/

5. Chamberlin, D.D., Boyce, R.F.: SEQUEL: A Structured English Query Language.
In: Rustin, R. (ed.) 1974 ACM SIGMOD Workshop on Data Description, Access
and Control. vol. 1, pp. 249-264. ACM (1974)

6. Clark, J., DeRose, S.: XML Path Language (XPath). W3C Recommendation 16
November 1999, from: http://www.w3.org/TR/xpath/

7. Frasincar, F., Borsje, J., Levering, L.: A Semantic Web-Based Approach for Build-
ing Personalized News Services. International Journal of E-Business Research 5(3),
35-53 (2009)

8. HP Labs: Jena (2011), from: http://jena.sourceforge.net/

9. Laux, A., Martin, L.: XUpdate (2000), from: http://xmldb-org.sourceforge.
net/xupdate/xupdate-wd.html

10. Lésch, U., Rudolph, S., Vrandeci¢, D., Studer, R.: Tempus Fugit. In: 6th Euro-
pean Semantic Web Conference on The Semantic Web: Research and Applications
(ESWC 2009). pp. 278-292. Springer-Verlag (2009)

11. Prud’hommeaux, E., Seaborne, A.: SPARQL. W3C Recommendation 15 January
2008, from: http://www.w3.org/TR/rdf-sparql-query/

12. Ray, I., Ray, I.: Detecting Termination of Active Database Rules Using Symbolic
Model Checking. In: Advances in Databases and Information Systems, Lecture
Notes in Computer Science, vol. 2151, pp. 266279 (2001)

13. Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das, S., Davis, 1., Harris, S.,
Idehen, K., Corby, O., Kjernsmo, K., Nowack, B.: SPARQL Update. W3C Member
Submission 15 July 2008, from: http://www.w3.org/Submission/SPARQL-Update/

14. Sun Microsystems: JavaCC (2011), from: http://javacc. java.net/

