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Abstract

Hermes is a Web-based framework that makes use of many Semantic Web technologies for building person-
alized news services. Ontologies are employed for knowledge representation, natural language processing
techniques are used for semantic text analysis, and semantic query languages enable the specification of
the desired information. To accommodate for the need for an intuitive way to create complex queries for
news information, we present the Hermes Graphical Query Language (HGQL). The language enables users
to create structured queries that use disjunctive, conjunctive, negation, and pattern operators. In addition,
this paper presents a ranking algorithm based on the queries made using our graphical query language.
Results show that our proposed ranking algorithm significantly outperforms three state-of-the-art ranking
algorithms and that users prefer our graphical query language over a text-based alternative.
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1. Introduction

One of the major problems that arise as a re-
sult of today’s unstoppable growth of the Web, is
the information overload daily users are confronted
with. This calls for a methodical approach to in-
formation filtering, for example news recommenda-
tion [1, 2, 3], in such a way that the presented subset
of results actually represents the individual user’s
preferences. Many information retrieval techniques
are already available, of which keyword matching is
the most common one. In such approaches, user-
specified keywords are matched to the available tex-
tual data, resulting in a relevant selection of infor-
mation matching these keywords. However, a prob-
lem with this approach is the lack of semantics, i.e.,
the meaning of words is not taken into account. For
example, the keyword ‘apple’ could refer to fruit,
the company, or even a person’s name.
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In order to deal with the previously identified se-
mantic issue while processing (news) text, in earlier
work we have introduced the Hermes news personal-
ization framework [4, 5] which is built upon Seman-
tic Web technologies. The news items are gathered
from RSS feeds provided by the user. Hermes is
composed of multiple natural language processing
resources that enable the processing (and query-
ing) of news. Also, by employing a plug-in-based
software architecture, the Hermes framework allows
for the addition of user-created specialized informa-
tion processing plug-ins. By default, the framework
stores lexicalized domain concepts and relations
(i.e., properties that relate concepts to each other
or to data types) in a domain ontology. The ontol-
ogy also stores synonyms (string representations)
of domain-specific entities like companies, persons,
etc., as well as their relations, such as subsidiary
and competitor relations. The domain ontology
is used to index news as well as to retrieve rele-
vant news items in a semantically-enhanced way. In
addition, we have proposed ontology-based recom-
mendation plug-ins that also benefit from Hermes’
ontology and the news processing framework [2, 6].

However, semantics-based matching alone is not
enough in order to provide a good personalized
news service, as user preferences also need to be
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elicited. This could be achieved by letting the user
specify queries that express the concepts of inter-
est. Therefore, in previous work we have devised a
text-based query language that makes use of lin-
guistic patterns that incorporate lexical, syntac-
tic, and semantic elements [7], and we have suc-
cessfully implemented the language into Hermes as
a plug-in. However, in order to aid the average,
day-to-day user, who is not an expert in informa-
tion technology, with creating a query, graphical
query languages can prove to be useful here. These
structured graphical languages aim to minimize the
amount of effort the user has to put into formulat-
ing queries, by providing a less complex syntax, and
by using only Boolean (AND, OR, and NOT) and
sequence operators (in the form of a sentence, i.e.,
they have a subject, a predicate, and an object).
Based on our previous experience with creating a
graphical query language for RDF, RDF-GL [8],
in recent work [9], we have introduced a graphical
query language designed for Hermes: the Hermes
Graphical Query Language (HGQL).
Although semantics-based queries generated

through a graphical query language provide the user
with a subset of potentially interesting news items,
these items need to be ranked according to their rel-
evance to the user query. Several weighting schemes
for concept importance have been proposed in the
literature. Most of the schemes can cope with AND
and/or OR operators for queries, but few solutions
have been devised to use these operators together
with the NOT operator. Hence, we propose to en-
hance the extended Boolean model [10] with the
negation operator.
This paper builds on recent work [9] and has

four main contributions with respect to the state-
of-the-art. First, we describe a graphical query lan-
guage for searching news that goes beyond current
keyword-based approaches, and which is addition-
ally supported by an implementation in Hermes.
Compared to our earlier work, we provide more de-
tails on the main language elements and grammar,
as well as the Hermes framework and the imple-
mentation of HGQL. Second, we devise a ranking
algorithm for sorting news that effectively supports
the negation operator. Third, in contrast to our re-
cent work, in our current endeavours, we provide a
quantitative and qualitative evaluation of the pro-
posed query language. Last, we provide an exten-
sive, more detailed, evaluation of our ranking al-
gorithm with respect to several vector space model
weighting schemes.

The rest of the paper is organized as follows.
First, Section 2 provides a more thorough de-
scription of the Hermes framework. Next, Sec-
tion 3 describes related work on graphical query
languages and relevance ranking algorithms. Sec-
tion 4 proposes the Hermes Graphical Query Lan-
guage (HGQL). Section 5 devises a ranking algo-
rithm for HGQL, and Section 6 discusses the im-
plementation of the language and its ranking algo-
rithm. The query language and algorithm are eval-
uated against other approaches in Section 7. Last,
Section 8 presents our conclusions and suggests fu-
ture work.

2. Hermes

The Hermes framework [1, 4], as depicted in Fig-
ure 1, is comprised of a sequence of steps for build-
ing a personalized news service. The system’s in-
puts are RSS news feeds, whereas its outputs are
filtered (relevant) news items. The core of the Her-
mes framework is a domain ontology developed by
domain experts, employed for indexing news items
and for formulating user queries. In addition, the
user can specify temporal constraints that news
items need to satisfy. The resulting news items are
sorted based on their relevance for the user queries.

After removing the duplicate news items from the
input RSS feeds through heuristics by lexically com-
paring news message titles, the news is processed
in three subsequent steps, i.e., news classification,
news querying, and results presentation. News clas-
sification is responsible for indexing the news items
based on ontology concepts. News querying con-
sists of two substeps: query formulation, i.e., help-
ing the user build the query that expresses the items
of interest, and query execution, i.e., computing the
results of query evaluation. In the last processing
step, the resulting news items are presented based
on their relevance to the user interests.

2.1. News Classification
The ontology concepts that are employed in the

news item classification stage are classes and indi-
viduals from the domain ontology. Concepts are
linked to sets of synonyms (synsets) from a seman-
tic lexicon such as WordNet [11], identifying their
unique meaning. The synonyms contained by a
synset are treated as lexical representations of the
associated ontology concept. General semantic lex-
icons are domain independent. Hence, for domain
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Figure 1: Overview of the Hermes framework.

dependent concepts in our ontology, we associate
additional domain specific lexical representations to
their corresponding concepts. These lexical repre-
sentations are composed only of word lemmas (the
canonical word form appearing in dictionaries).
The classification approach is ontology-centric,

implying that during news item processing, ontol-
ogy concepts are loaded one at a time and their lex-
ical representations are matched against the news
items. This approach is more efficient than a news
item-centric algorithm, as the number of concepts
in the ontology is considerably larger than the num-
ber of words in the news items (for batch processing
of news items).
Before ontology concepts can be matched, how-

ever, a few basic processing tasks have to be per-
formed in order to prepare the plain text to be
machine interpretable. First tokenization, sentence
splitting, part-of-speech tagging, and morphologi-
cal analysis are performed. The tokenization pre-
cedes sentence splitting as sentence splitting re-
quires punctuation tokens stemming from tokeniza-
tion. Morphological analysis follows part-of-speech
tagging because the lemma of a word depends on
its part-of-speech tag. In this way, all words in a
news item are reduced to their canonical form, a
form shared also by the lexical representations of
concepts stored in the domain ontology.
After these processing steps, lexical representa-

tions of the ontology concepts are matched with
identified (groups of) lemmas in the news messages.
As the same lexical representation can belong to dif-
ferent concepts, for each match, the word sense of
the lemma identified in the text is disambiguated
using the adapted Lesk algorithm [12]. This al-
gorithm retrieves the glossary of a lemma sense, as
well as the glossaries of related senses from a seman-

tic lexicon, and calculates similarity scores between
each considered sense’s glossary words and the con-
text words (from the sense’s sentence). After dis-
ambiguating the senses of matching lemmas using
the previously computed highest similarity scores,
news items are linked to the corresponding concepts
in the domain ontology.

2.2. News Querying
Within the Hermes framework, the user is able to

express the topics of interest through queries that
make use of concepts from the domain ontology. In
addition, the user can express time constraints that
need to be satisfied. In order to assist the query
construction process, the user is presented a con-
ceptual graph representation of the ontology, which
gives insight into the overall structure of the do-
main at hand. Within this graph, the user is able
to select the concepts of interest, which are added
to a search graph. This graph has generalized dis-
junctive semantics with respect to the included con-
cepts, indicating that the user is interested in any
of the search graph concepts to be found in news
items, but has a stronger preference for more of the
specified concepts appearing in a top ranked news
item in the result list. For each of the concepts
in the search graph, all lexical representations are
taken into consideration by the framework when fil-
tering news messages.

Additionally, the user can employ time compari-
son or arithmetic operators and retrieve the current
time in order to build complex time expressions.
Moreover, the system provides predefined tempo-
ral constraints such as: last day, last week, last
two weeks, last three months, last quarter, last half
year, and last year. The temporal conditions that
model these constraints have conjunctive semantics
as they need to be fulfilled in the same time.
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The specified time constraints and the concepts
of interest contained in the search graph are con-
verted into a query formulated in a text-based
semantic query language, e.g., SPARQL [13], or
tSPARQL [4, 5] (a SPARQL extension with time-
specific features). Subsequently, news items linked
to the concepts of interest are retrieved.

2.3. Results Presentation
As a last step in the framework, the retrieved

news items (matching the user-defined criteria) are
ordered descendingly according to their relevance
and are displayed in a visually appealing manner
explaining their relevance to the user query.
News items can be ranked in many ways. In

Hermes, news ranking is generally performed by
calculating a relevance agree, which is defined as
a weighted sum of the number of hits, where the
weights depend on the hits location (either the ti-
tle or the body of a news item). News items that
have the same degree of relevance are sorted de-
scendingly, based on their associated time stamps.
In this paper we propose and evaluate a more ad-
vanced ranking algorithm, and compare its perfor-
mance to other ranking algorithms.
Last, the results are presented to the user as a list

of summaries, containing title, source, date, and a
few lines from the news item. Also, the relevance
degrees are shown. Moreover, for each returned
news item, the identified lexical representations are
emphasized in the news item text, thereby offering
to the user an explanation of why a certain news
item is considered to be relevant.

3. Related Work

This section gives an overview of related research
in the field of information retrieval, more specif-
ically on graphical representations of queries and
relevance ranking algorithms.

3.1. Graphical Query Languages
One of the merits of graphical query represen-

tations is that they are considered to be easier to
comprehend by humans than their textual counter-
parts, under the assumption that the representa-
tions are not too complex. Additionally, textual
representations often require the user to be famil-
iar with a certain complex syntax, steepening the
learning curve. These factors continue to drive the
development of graphical query languages.

In [14], a technique for building graphical queries
for RDF is introduced. The RDF data model is
based on triples, which are composed of a subject,
a predicate, and an object. The language discussed
in [14] uses rounded rectangles with a predicate and
optionally an object to visualize queries. Multiple
of these rounded rectangles can be interconnected,
creating conjunctive queries (i.e., by using a logical
AND). Object nesting is also supported, enabling
resource linking. Hence, it is possible to create a
query, for which the object is defined by another
query. A disadvantage of this language is that it
does not provide support for disjunctive queries.

RDF-GL [8] is a graphical query language for
RDF and is based on the standard query lan-
guage SPARQL. This language does support a
wider set of operators than [14], such as conjunc-
tion, disjunction, and negation. It uses boxes, cir-
cles, and arrows in different colors to represent
its elements. RDF-GL covers the SELECT state-
ment from SPARQL, yet this wide coverage of the
SPARQL language makes the graphical language
too complex for our intended use.

Another graphical query language is GLOO [15],
in which the user can specify concepts, individ-
uals, relations, and logical operators (AND/OR).
Ovals, squares, and arrows are the building blocks
for GLOO. GLOO is a powerful graphical query
language, allowing the user to make relatively com-
plex queries in an intuitive way. However, there is
no method discussed for the implementation of fil-
ters, such as those in RDF-GL, nor is there built-in
support for negation.

The authors of [16] propose an approach to query
databases in a graphical way using the ‘Query by
Diagram’ system. The system uses the Entity-
Relationship Model as a conceptual model. Al-
though one could adapt the Entity-Relationship
Model to support RDF, the semi-structured nature
of RDF data would cause many issues when dealing
with open world representations.

In [17], a graphical query language is proposed
that avoids the explicit use of Boolean operators. It
is designed specifically for non-technical users that
require an easy-to-use language. Our approach dif-
fers from this approach, as we explicitly focus on
Boolean operators. The group of users that we are
targeting need to be using such operators in an ef-
fective and efficient way. The only assumption that
we make about the users of HGQL is that they are
not familiar with existing graph query languages,
such as SPARQL.
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3.2. Relevance Sorting Algorithms
In order to sort query results, many algorithms

have been developed. Most of these approaches em-
ploy a model which relies on additional term weight-
ing procedures.

3.2.1. Ranking Models
The most elementary ranking model is the

Boolean model [18], which uses the structured
query operators AND representing the logical prod-
uct, OR representing the logical sum, and NOT
representing the logical difference. However, this
model does not provide any ranking mechanism for
text querying.
One of the earliest models for ranked retrieval

is the vector space model [19]. The vector space
model is based on measuring the similarity between
a query and a document. The document vector is
d = (d1, d2, . . . , dm) of which each component dk

(1 ≤ k ≤ m) is associated with an index term (i.e.,
a word, a keyword, or a longer phrase). An index
term is a term occurring in the documents or the
query (the vocabulary). For the query there is a
similar vector q = (q1, q2, . . . , qm) of which the com-
ponents are associated with the same terms. The
vectors contain binary values indicating whether a
term occurs in the document or query, or numerical
values to indicate the importance of a term. The
vector space model maps every term to a differ-
ent dimension. The query and document are con-
sidered vectors in the high dimensional Euclidean
space determined by the terms. The similarity is
measured by taking the cosine of the angle between
the query vector and the document vector. If the
vectors are normalized, the cosine is merely a vec-
tor inner product [20]. There is a need for an ad-
ditional term weighting model, because the vector
space model does not describe the values of the vec-
tor components. Also, the model is only able to
cope with conjunctive queries.
The vector space model can be extended to the

p-norm extended Boolean model so that it is able
to additionally support disjunctive queries. Let us
consider a query of 2 terms and that the vectors are
normalized to unit length. Point (1,1) represents
the situation that both query terms are present with
weight 1. Point (0,0) represents the situation that
both query terms are not present. Documents in
point (1,1) have the highest relevance for conjunc-
tive queries while documents in point (0,0) have the
lowest relevance if the query is disjunctive. There-
fore, the documents should be ranked in order of

increasing distance from the point (1,1) for conjunc-
tive queries and in order of decreasing distance from
point (0,0) for disjunctive queries. This reasoning
gives the definition of the following scores [19]:

score (d, a OR b) =√
(da − 0)2 + (db − 0)2

2 , (1)

score (d, a AND b) =

1−
√

(1− da)2 + (1− db)2

2 . (2)

Generalizing these formulas and extending them
with term weights introduces a p-norm that pro-
vides a certain softness to Boolean operators [19]:

score
(
d, q OR(p)

)
=(∑m

k=1(qk)p(dk)p∑m
k=1(qk)p

)1/p

, (3)

score
(
d, q AND(p)

)
=

1−
(∑m

k=1(qk)p(1− dk)p∑m
k=1(qk)p

)1/p

. (4)

Salton et al. propose a recursive algorithm in
order to cope with queries that contain both con-
junctive and disjunctive operators [10]. The use
of ‘-1’ for query terms with the NOT-operator is
mentioned in literature [21] in order to cope with
negation queries. Terms that do not appear in the
document are represented as ‘-1’ in the document
vector. This approach has, nevertheless, neither
theoretical nor empirical support so far. The vec-
tor space model and the p-norm extended Boolean
model both work with all the terms appearing in all
documents and in the query. In Hermes, concepts
are used instead of terms, so with this adjustment
these models can be reused for Hermes.

Another solution aiming at incorporating nega-
tion in vector spaces is based on linear algebra [22].
A negated concept is represented as its orthogonal
complement under the scalar product. Compared
to this approach, our current endeavours aim to
build on the (computational) simplicity of the ex-
tended Boolean model proposed by Salton [10] by
enhancing it to be able to deal with the negation
operator.

Fuzzy set-based information retrieval models
rank the documents based on the degree of mem-
bership of the document to the terms in the query.
Paice’s model [23] extends the basic fuzzy models
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by adding different computations of membership
for disjunctive and conjunctive queries, but it does
not support negation queries. Like the vector space
model, this model needs an additional term weight-
ing algorithm.
Other approaches focus on ranking complex re-

lationship search results, employing the concept re-
lationship between the appearing concepts, on the
Semantic Web. The work done in [24] is an example
of such an approach. The authors employ a ranking
model that takes the relationship structure between
entities into account. Stojanovic et al. [25] apply
inference on ontologies for ranking entities on the
Semantic Web. Because we focus on news retrieval
with a relatively simple annotation structure, such
approaches are out of the scope of the paper.

3.2.2. Term Weighting
Most of the earlier discussed relevance ranking

algorithms rely on additional term weighting pro-
cedures, of which many have been developed in the
past decades [26]. Essentially, term weighting mod-
els treat the query like a document. Both the doc-
ument and the query terms are assigned a weight,
and subsequently the similarity of these weights is
calculated using one of the models described in the
previous section.
Most modern weighting algorithms are based

on the Term Frequency – Inverse Document Fre-
quency (TF-IDF) [27] concept. Term Frequency
(TF) weighting counts how often a term occurs in
the document and query. The more often a term
occurs in a document, the more relevant that term
is considered to be to that particular document.
Inversed Document Frequency (IDF) weighting is
the inverse of the number of documents a term oc-
curs in. A term that occurs in a low number of
documents is considered to be specific and there-
fore documents with this term should have a high
weight. By multiplying TF and IDF values, one ob-
tains the TF-IDF weights, which can be normalized
using cosine normalization:

dk = qk =
TFk · log N

dfk√√√√ m∑
i=1

(TFi · log N

dfi
)2

. (5)

Here, d represents the document vector, q repre-
sents the query vector, TF is the term frequency,
N is the total number of documents in the doc-
ument collection, m is the total number of index
terms, and df is the document frequency.

In 1988, Salton and Buckley proposed that the
document and query weights should be mapped dif-
ferently [28]. Consequently, many variations of TF-
IDF have been proposed for this purpose, which
have been assigned names according to a naming
convention where two three-letter combinations are
used. The first group represents the document term
weight, and the second combination represents the
query term weight. The first letter of such a com-
bination indicates the TF component, the second
letter the IDF component, and the third letter rep-
resents the normalization. An example of this is
the tfc.nfc algorithm, which uses a normalized TF
factor for the query weights. The original TF-IDF
algorithm as previously described is called tfc.tfc.

An important discovery is that weights that are
logarithmic in TF outperform weighting algorithms
that are linear in TF [29]. An example of this is the
lxc.ltc formula, where the ‘l’ stands for weights with
a logarithmic TF or IDF component. The normal-
ization part of these formulas is left out here be-
cause it follows the usual cosine normalization. For
lxc.ltc, the weights are calculated as follows:

dk = 1 + log TFk , (6)

qk = (1 + log TFk) · log N + 1
dfk

. (7)

A more recent algorithm that claims to be out-
performing the cosine normalization is the Lnu.ltu
algorithm [30]. This algorithm uses a combination
of the document length and the average document
length for normalization:

dk = 1 + log TFk

1 + log TFavg
· 1

(1− s) + s uw
uwavg

, (8)

qk = (1 + log TFk) · log N + 1
dfk

·

1
(1− s) + s uw

uwavg

, (9)

where TFavg is the average term frequency of all
terms in document dk, uw denotes the number of
unique words in dk, uwavg represents the average
number of unique words (taken over all documents
d), and s is the slope factor that is dependent on
the number of unique terms in the document and
therefore experimentally determined. Slope s is op-
timized to 0.25 when using pivoted unique normal-
ization in [31].
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4. Hermes Graphical Query Language

This section discusses the theoretical frame-
work for the Hermes Graphical Query Language
(HGQL). First, we introduce the basic elements
of an HGQL query, which is in essence a directed
graph consisting of nodes (colored rounded rectan-
gles) and edges (arrows). Then, we discuss the main
forms of HGQL queries, followed by a presentation
of the grammar of HGQL.

4.1. HGQL Elements
Elements in HGQL can be divided into two cat-

egories: nodes and edges. Nodes can represent
concepts, wild cards, operators, and relations and
take the form of rounded rectangles in different col-
ors. Edges represent connections between nodes
and take the form of lines with arrows at one end.

Concepts. The concepts that are used in HGQL
are domain classes and individuals stemming from
a domain ontology. These concepts can represent
people, countries, companies, etc. Concepts are de-
picted as purple boxes and are denoted by noun
phrases.

Relations. The relations allow the user to employ
HGQL’s triple-based pattern querying. By creating
a query with the structure Concept→ Relation→
Concept, news items matching that pattern will be
returned. The possible instances of a relation are
extracted from the knowledge base. Relations are
represented by verb phrases. Instances of the rela-
tion category are denoted as green nodes.

Wild Cards. A wild card is a construct in the
HGQL that stands for a group of nodes, that repre-
sents either concepts or relations (partly) unknown
to the user, and hence wild cards are essentially
existential quantifiers over either concepts or rela-
tions. The wild card can be either ‘unknown’ or a
text match. For example, the HGQL query ‘Google
UNKNOWN Yahoo’ will return any news items in
which a relation between Google and Yahoo exists.
The text match provides the user with the ability
to find concepts or relations for which he does not
know the exact name. For example, in case the user
is interested in Apple’s CEO Steve Jobs, yet only re-
members the last name Jobs, the user can use a text
match node for Jobs and the concept with the clos-
est lexical match will be used in the query. From
now on, when we refer to concepts, this includes

concept wild cards, and similarly, when referring
to relations, this includes relation wild cards. In-
stances of the wild card category are represented in
the color of the type of node they match, i.e., pur-
ple for concepts and green for relations, but with a
different label (e.g., UNKNOWN, “Jobs”, etc.).

Operators. The operators are a group of nodes in
HGQL that allows the user to add logic to queries.
There are two types of operators: intra-query and
inter-query. Intra-query operators support logic
within queries and we distinguish between con-
junction (AND), disjunction (OR), and negation
(NOT). The reason for using these specific oper-
ators is that the combination of them can be used
to create any possible propositional logic formula.
Although combining the conjunction and negation
or the disjunction and negation logical operators is
already enough to obtain logical completeness, we
offer all logical operators in order to better support
the user by giving a higher degree of freedom in ex-
pressiveness. Instances of the intra-query operators
category are denoted as light blue nodes. Inter-
query operators support logic (conjunction, dis-
junction, and negation) between different queries,
allowing the user to process multiple queries simul-
taneously. Inter-query operators connect to the top
node (i.e., the node that has no incoming edges) of
the query; if the query is a (chained) triple-based
pattern query, the inter-query operator connects to
the first predicate in the predicate chain (root of
predicates). Instances of inter-query operators are
denoted as yellow nodes.

Edges. Edges provide connectivity between nodes
(i.e., concepts, relations, wildcards, and operators)
and consist of two types: logical connectivity edges
and pattern connectivity edges. Logical connectiv-
ity edges allow for the connection of operators to
concepts and relations. The arrows for logical con-
nectivity edges always point from the operator node
to concepts, wild cards, or relations and are colored
light gray.

Pattern connectivity edges (depicted as black ar-
rows) allow for the creation Subject → Predi-
cate → Object pattern structures by connecting
the concepts, wild cards, and relations. If multi-
ple subjects exist, logical connectivity edges con-
nect these subjects to an operator, which in turn
can be connected to a relation node or a node that
is the root to multiple relations. The direction
of a pattern connectivity edge determines the pat-
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tern order of elements. Relations require incoming
edges which connect to their subject(s) and outgo-
ing edges which connect to their object(s).

4.2. HGQL Structure
A query in HGQL is represented as a directed

graph. Three types of queries can be identified,
i.e., queries consisting only of concepts, queries fol-
lowing the triple paradigm, and chained queries.

Concepts-only Queries. The most simple type of
query one could create in HGQL is the concept-only
query, which consists of one or more concept nodes
connected by at least one operator, allowing for the
construction of conjunctive, disjunctive, and nega-
tion queries (and their combinations). The root
node of such a query is an operator, and all con-
cepts (and other operators) are connected to this
node. Edges run from the local root node to the
non-root nodes and operator nesting is allowed. An
example of a complex concepts-only query is shown
in Figure 2, which represents a query for retrieving
all news items in which Dell is mentioned, as well
as either Cisco or Mac OS, but not AMD.

Triple-based Pattern Queries. In HGQL, the user
is also allowed to query for specific patterns
within news items by means of triple-based pat-
tern queries. HGQL supports the Subject →
Predicate → Object pattern, which is also em-
ployed in RDF. A triple-based pattern mimics the
structure of a simple English sentence (subject-
verb-object). A simple query of this type would
be Concept → Relation → Concept, which can
be extended by the use of logical operators in
any of these three fields. In order to maintain
the Subject → Predicate → Object structure,
a triple based pattern query always has pattern
connectivity edges pointing from the subject(s)

Figure 2: An example of a concepts-only query.

towards the relation(s) and from there towards
the object(s). When a triple-based pattern query
has multiple subjects, relations, and objects, it
can be divided into three trees that are intercon-
nected at the root nodes by pattern connectiv-
ity edges. Hence, the root of the subjects con-
nects to the root of the relations, which in turn
connects to the root of the objects. An example
can be seen in Figure 3, which expresses a query
that retrieves all news items matching the patterns
AMD → NewCompetitor/Buys → Dell/MacOS
and CISCO → NewCompetitor/Buys →
Dell/MacOS. A news item needs to contain both
of these patterns in order to be returned.

Chained Queries. A specific type of triple-based
pattern queries are chained queries. Chained
queries have the same properties as triple-based
pattern queries, but additionally, it is possible to
use the object of one triple pattern as the subject
of another triple pattern. For example, the chained
query in Figure 4 joins two triples. The query rep-
resented here retrieves all news items that match
the pattern AMD → NewCompetitor → Dell and
the pattern Dell→ Buys→MacOS.

4.3. HGQL Grammar
In this section, we provide the EBNF grammar

of the HGQL language. First, we present the query
types that are used in the grammar specification
and how these relate to the HGQL queries. Second,
for each of these query types, we explain how HGQL
queries can be serialized to text. Last, we discuss
the EBNF grammar that completely covers HGQL,
which is used for checking the validity of HGQL
queries.

In the previous section, we learned that HGQL
queries can be one of three types: concepts-only
queries, triple-based pattern queries, or chained
queries. Furthermore, in Section 4.1, we dis-
tinguished between intra-query inter-query opera-
tors. Consequently, in our grammar specification,
we describe the following three types of queries:
concepts-only queries, pattern queries (describing
triple-based and chained queries), and compound
queries (queries that contain an inter-query opera-
tor).

For concepts-only queries, we use a recursive tree
representation for the translation of HGQL queries
to text (a query is a node with a list of children
nodes). In fact, this translation is trivial because
concepts-only queries are strict trees that have no
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Figure 3: An example of a triple-based pattern query.

Figure 4: An example of a chained query.

floating nodes. For pattern-queries, we use a se-
quence of nodes separated by special characters (as
shortly defined). For the last type, i.e, the com-
pound queries, we use a representation that is a
tree of query nodes. The translation of concepts-
only and pattern-based queries to HGQL queries
is trivial, as there is a direct connection between
the two. For compound queries, we construct the
HGQL based on the rules described in Section 4.1,
i.e., inter-query operators connect to the root node
of a concepts-only query and to the root of the first
predicate of a triple-based or chained query.

The EBNF grammar of HGQL is given in Fig-
ure 5. A query can be a concept query, a pattern
query, or a compound query. A concepts-only query
(i.e., concept_query) consists of at least one AND,
OR, or NOT operator. We further introduce the
notion of a concept cover (i.e., c_cover). This is
a recursive definition of a node that covers one or
more concepts. The pattern query description uses
this notion of a concept cover, as well as the no-
tion of a relation cover (i.e., r_cover). The relation
cover is a node that can represent one or more pred-
icates. Next, a compound query consists of at least
one AND, OR, or NOT operator that is applied
to a query (i.e., either a concepts-only query or a
pattern query). The EBNF further describes the
way we serialize concepts and predicates from the
knowledge base. Concepts start with an underscore
(‘_’), while predicates start with a hash sign (‘#’).
Additionally, the match node is described, which
can be used to match concepts and relations using
arbitrary text. The last part of the EBNF grammar
describes the terminals for the HGQL nodes (AND,
OR, NOT, and the UNKNOWN node).

Using this EBNF grammar, we can represent the
HGQL query in Figure 2 as follows:

AND(
NOT(_AMD),
OR(

_CSCO,
_Mac_OS

),
_DELL

)

The order of the nodes does not affect the re-
sult. Note that the nodes from the knowledge base
(AMD, CSCO, Mac_OS, and DELL) start with an
underscore. In this case, we have used new lines to
make the query more readable, which is perfectly
fine as newline characters (and other whitespace
characters) can be ignored by the parser.

The HGQL query in Figure 3 can be serialized as
follows:

AND(
_AMD,
_CSCO

)
->
OR(

#buys,
#is_competitor

)
->
OR(

_Mac_OS,
_DELL

)

Also in this case, we have made use of newline char-
acters to make the query more readable. In the
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query : concept_query | pattern_query | compound_query

concept_query : (AND | OR) ‘(’ c_cover (‘,’ c_cover)* ‘)’
| NOT ‘(’ c_cover ‘)’

c_cover : concept
| match
| UNKNW
| (AND | OR) ‘(’ c_cover (‘,’ c_cover)* ‘)’
| NOT ‘(’ c_cover ‘)’

pattern_query : c_cover ‘->’ r_cover ‘->’ c_cover (‘->’ r_cover ‘->’ c_cover)*
r_cover : rel

| (AND | OR) ‘(’ r_cover (‘,’ r_cover)* ‘)’
| NOT ‘(’ r_cover ‘)’

compound_query : (AND | OR) ‘(’ query (‘,’ query)* ‘)’
| NOT ‘(’ query ‘)’

concept : ‘_’ ([0-9] | [a-z] | [A-Z]) ([a-z] | [A-Z] | ‘_’)*
rel : ‘#’ ([0-9] | [a-z] | [A-Z]) ([a-z] | [A-Z] | ‘_’)*
match : ‘MATCH("’ ([0-9] | [a-z] | [A-Z] | ‘_’)+ ‘")’

AND : ‘AND’
OR : ‘OR’
NOT : ‘NOT’
UNKNW : ‘UNKNW’

Figure 5: The specification of the HGQL grammar in EBNF format.

OR node we can see the two predicates ‘buys’ and
‘is_competitor’, which start with a ‘#’ character to
indicate that these nodes are predicate nodes.

5. Hermes Ranked Results

Within the Hermes news personalization frame-
work, a list of news items that are likely to be
interesting for a user is retrieved. For this pur-
pose, a ranking mechanism is required that orders
the items based on their relevance with respect to
user-created queries. Hermes Ranked Results is
an extension to the Hermes framework that ranks
the news on relevance based on queries created in
HGQL, the previously introduced graphical query
language for Hermes.

5.1. Normal Forms

As it is unfeasible to define different ranking
methods for each possible query, we need to nor-
malize the query form. An example of a normal
form is the negation normal form (NNF). A query

is in negation normal form if negation is only ap-
plied to single concepts or patterns, and if only dis-
junctive, conjunctive, and negation operators are
used. Two possible extensions of NNF are the dis-
junctive normal form (DNF) and the conjunctive
normal form (CNF). A query takes on the disjunc-
tive normal form if it is a disjunction of clauses,
where a clause is a conjunction of possibly negated
concepts or patterns. All rules for NNF also apply
to DNF. A query is written in the conjunctive nor-
mal form if it is a conjunction of clauses, where a
clause consists of a disjunction of concepts or pat-
terns that are possibly negated. Technically, it is
equivalent to DNF, except the disjunction and con-
junction operators are swapped. Each query can be
converted to NNF, DNF, or CNF [32].

In Hermes, DNF is used as normal form, inter-
preting a query as a disjunction of its conjunctive
subqueries. The queries made in HGQL are con-
verted to DNF using double negation elimination,
De Morgan’s laws, and the distributive law [33]. In
order to be able to also rank the news for queries
that besides concepts, also contain patterns, pat-
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terns are treated just like concepts. For this, we
first need to convert pattern queries to a form
that is compatible with the ranking algorithm. In
HGQL, one can create a pattern based query with
logical operators within a single pattern. The rank-
ing algorithm can only process queries that consist
of simple patterns with operators between them.
Such a simple pattern has only one subject, one
predicate, and one object, and represents a so-called
complex concept. A complex pattern, which is a
pattern that uses logical operators in a pattern, is
reduced to simple patterns (complex concepts) that
are connected by logical operators, by outer moving
the logical operators.
Chained queries are not an explicit part of

HGQL. This type of query is simulated by two com-
plete patterns connected by a conjunctive operator,
where the first pattern’s object is the same as the
second pattern’s subject.

5.2. Ranking Algorithm

After converting a regular HGQL query to a
query in DNF, a ranking algorithm can be applied
that makes use of the converted queries in order to
sort news items based on their relevance to the user.

5.2.1. Document and Query Representation
In order to be able to use a relevance ranking al-

gorithm, we first need to represent query and docu-
ments as weight vectors. In this study, we calculate
term weights by means of four different algorithms
– discussed Section 3.2.2 – to check which one re-
turns the best results.
The first method is a simple binary weight, i.e.,

the extended Boolean method. The document
weight is 0 if the concept does not occur and 1 if it
does occur at least one time in the document. The
same holds for the query weights. This method
is an extension of the original extended Boolean
model by Salton et al. [10], which does not sup-
port negation operators. Second, the basic TF-
IDF weighting algorithm with cosine normalization
(tfc.tfc) is used. The third method is lxc.ltc, which
is a TF-IDF variation with logarithmic TF and IDF
weights, as described in Equations (6) and (7). The
last method used is the Lnu.ltu algorithm as de-
scribed in Equations (8) and (9), which is said to be
outperforming the previous algorithms using cosine
normalization. This algorithm uses a combination
of the document length and the average document
length for normalization. As slope we use a value

of 0.25, since it has been shown that this value pro-
vides the best results [31].

5.2.2. Disjunctive & Conjunctive Queries
Hermes uses a combination of the two formulas

of the p-norm extended Boolean model, described
in Equations (3) and (4), with p = 2. The lat-
ter formula addresses conjunctive queries, whereas
the former formula copes with disjunctive queries.
The input queries for this model are in DNF, im-
plying that there are two parts, i.e., a disjunctive
query and a collection of conjunctive subqueries.
First, all the weights of the conjunctive subqueries
are calculated by Equation (4). Then, using Equa-
tion (3), the total relevance of the document using
the obtained weights of the subqueries is computed.
The query weights in the formula that calculates
the total score of the document are 1 because all
subqueries are present one time. This results in the
following relevance score calculation:

score(wi OR(p)) =
(∑n

k=1(wi)p

n

)1/p

, (10)

wi

(
d, q AND(p)

)
=

1−
(∑m

k=1(qk)p(1− dk)p∑m
k=1(qk)p

)1/p

, (11)

where d is the document vector, q is the query vec-
tor, m is the total number of terms in the docu-
ments and query, n is the total number of conjunc-
tive clauses, and wi is the weight of clause i.

5.2.3. Negation
Up until now, the relevance scoring mechanism

does not take in consideration the negation opera-
tor. Therefore, we make an adjustment to the query
and document weights to cope with this operator.
The query weights for concepts that are not part
of the query are 0, and the query weights for con-
cepts that occur in the query and are not negated
are calculated with the four different methods de-
scribed above. The weights of query concepts that
are negated are computed in a similar way as be-
fore, although they are multiplied by -1. Document
weights remain the same for concepts that occur
in the document, while concepts that do not occur
in the document are given weight -1 instead of 0.
One can note the asymmetry in dealing with nega-
tions in documents and queries, as queries get the
modulus of the term weight from the whole set of
documents.
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With the original vector inner product, this ap-
proach is correct with respect to the intended query
semantics. The query and document weights are
simply pairwise multiplied in this approach. There-
fore, documents get a negative relevance when the
query concept is negated while the concept does
occur in the document, or when the query concept
is not negated but the concept does not occur in
the document. The relevance will be positive when
a non-negated concept of the query occurs in the
document, or a negated query concept does not oc-
cur in the document. Concepts that do not occur in
the query will not affect the relevance score, as the
assigned weight to these concepts in the query is 0,
resulting in a relevance score of 0 when multiplied
with the document weight.
Due to the changes in term weighting caused by

also considering the negation operator, the rank-
ing model described earlier needs to be updated ac-
cordingly, as it was assuming a Boolean weighting
model. In some cases, the original ranking algo-
rithm results in the same scores for negated and
non-negated queries. If the document contains a
term (dk = 1), the query weight is multiplied with
0 according to Equation (11). This results in a value
of 0 for the last term, independent from the value
of the query weight. However, the equation pro-
vides incorrect relevance scores when a document
does not contain a term (dk = −1). In this case,
the query weight qk will be multiplied with a value
higher than 1 (1 − dk = 1 − −1 = 2), which may
result in values below 0 (for the clause weight). As
for the p-norm extended Boolean model, we aim for
relevance schemes that are between 0 and 1, where
high values denote high relevance.
In order to be able to calculate the relevance score

of news items based on structured queries consist-
ing of disjunctive, conjunctive, and negation opera-
tors, we need to adjust Equations (1) and (2). The
OR part is based on the distance to the worst case
(0,0). With negation we have a new worst case, i.e.,
(−qa,−qb) for the specific case of two query terms a
and b. In general, the worst case is −qk. The AND
part of this formula is based on best case (1,1). The
new best case for negation queries in case of two
query terms a and b is (qa, qb), so in general, the
best case is qk. The old formulas adjusted with this
knowledge to make them compatible with negation
queries result in Equations (12) and (13). For OR
queries, (d + q)2 is maximal when d = q = 1 or
d = q = −1 and for AND queries (q − d)2 is maxi-
mal when q = −1 and d = 1 or q = 1 and d = −1.

score (d,Qor) =

√
(da + qa)2 + (db + qb)2

(2 · qa)2 + (2 · qb)2 , (12)

score (d,Qand) =

1−

√
(qa − da)2 + (qb − db)2

(2 · qa)2 + (2 · qb)2 . (13)

Qor is either a ∨ b, a ∨ ¬b, ¬a ∨ b, or ¬a ∨ ¬b, and
Qand is either a∧b, a∧¬b, ¬a∧b, or ¬a∧¬b. From
these formulas we can deduce the generalization for
queries able to deal also with negations, resulting
in Equations (14) and (15):

score
(
d, q OR(p)

)
=(∑m

k=1(qk)p(dk + qk)p∑m
k=1(2 · qk)p

)1/p

, (14)

score
(
d, q AND(p)

)
=

1−
(∑m

k=1(qk)p(qk − dk)p∑m
k=1(2 · qk)p

)1/p

. (15)

Based on these formulas, we can instantiate the
formula for combined disjunctive and conjunctive
queries, compatible with negation queries. Because
the range of the weights from the AND part of the
formula is now from 0 to 1, we do not have to change
the OR part of the formula which calculates the dis-
junction of the subquery weights. Hence, we obtain:

score(wi OR(p)) =
(∑n

k=1(wi)p

n

)1/p

, (16)

wi

(
d, q AND(p)

)
=

1−
(∑m

k=1(qk)p(qk − dk)p∑m
k=1(2 ∗ qk)p

)1/p

, (17)

where d is the document vector, q represents the
query vector, m is the total number of terms in
documents and query, n is the total number of con-
junctive clauses, and wi is the weight of clause i.

6. Implementation

Both the query language and the ranking algo-
rithm are implemented in the Hermes News Por-
tal (HNP), i.e., our implementation of the Hermes
news personalization framework, which has been
introduced earlier in Section 2. Our implemen-
tation of the HGQL-enabled result ranking HNP
can be downloaded from http://people.few.eur.
nl/fhogenboom/hermes.html. The HNP allows
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users to formulate queries and execute them on
the domain ontology in order to retrieve relevant
news items. The HNP application is a stand-alone,
Java-based tool which makes use of Semantic Web
technologies, and supports extendability through
the support for user-created plug-ins (e.g., HGQL-
related components). Its internal knowledge base is
an expert-created domain ontology with 66 classes,
18 object properties, 11 data properties, and 1173
individuals, represented in OWL [34], offering use-
ful features for information representation in Her-
mes, e.g., the ability to describe disjoint classes, role
cardinality, and role symmetry. Concepts that ap-
pear also in the WordNet [11] semantic lexicon have
associated the corresponding WordNet synset. For
manipulating OWL representations, the Jena [35]
library is employed. While populated ontologies
are typically queried by the Semantic Web’s stan-
dard query language SPARQL [13], querying within
HNP is performed through tSPARQL queries [4, 5],
an extension of SPARQL with time-specific fea-
tures. The classification of the news articles is done
using GATE [36, 37] and synset information made
available by the WordNet semantic lexicon.
In order for the HNP plug-ins to operate, a few

processing tasks need to be performed first. For
this, GATE provides a pipeline consisting of differ-
ent components, which are in order of usage: Doc-
ument Reset, ANNIE English Tokenizer, ANNIE
Gazetteer, ANNIE Sentence Splitter, ANNIE Part-
Of-Speech Tagger, Word Sense Disambiguator, and
OntoGazetteer. These components clean each doc-
ument (news item) from annotations, after which
text is tokenized into numbers, words, punctua-
tion, etc. Then, the ANNIE Gazetteer looks up
words from gazetteer lists (i.e., lists with names
of, for example, cities, countries, companies, days
of the week, world leaders, etc.) for annotation.
Subsequently, the pipeline identifies sentences, re-
quired for part-of-speech tagging that is performed
through a modified version of the Brill tagger [38].
A word sense disambiguation procedure based on
the adapted Lesk algorithm [12] implementation
made available in [39] is performed to determine the
meaning of words in the news text. The WordNet
semantic lexicon is used to provide the word senses
and their definitions. Last, the OntoGazetteer com-
ponent annotates tokens with ontological concepts.
In the default configuration of the HNP, the user

searches for news by selecting the concepts of inter-
est by using a graph visualization of the knowledge
base (depicted in Figure 6), from which the user

can choose either single concepts or concepts which
are related to a certain concept. These concepts
are stored in a search graph, which is depicted in
Figure 7. After selecting all concepts of interest,
news can be queried using some additional time
constraints, if desired. For querying, the selected
concepts are interpreted as a disjunctive set of con-
cepts, favoring results with many of the requested
concepts. The HNP presents a ranking of news
items along with their computed relevance scores.
Concepts of interest are highlighted in the result
list, as depicted in Figure 8.

Within the HNP, user profiles can be created as
well, which can store search queries. In future re-
leases, these user profiles can be exploited by al-
lowing the user to assign importance weights to the
selected concepts of interest. At the moment, the
weights given by the users are not considered in the
implementation.

Our HGQL plug-in for the HNP represents
ontologies using a graph visualization generated
through the Prefuse [40] Java API, while the
OWL2Prefuse [41] Java API is used for the vi-
sualization of the OWL knowledge base. Also,
queries are transformed to SPARQL, which are
executed by means of ARQ [42]. Additionally,
SPARQL/Update statements supported by the
ARQ Java API are used in order to update ontolo-
gies. The conversion of queries to DNF is done by
employing the Orbital library [43].

In the HGQL tab, depicted in Figure 9, the user
is able to build queries using the Boolean opera-
tors AND, OR, and NOT. HGQL also offers the
ability to create pattern queries, consisting of a
subject, a predicate, and an object. The user
can add concepts and relations on the fly to the
HGQL query canvas by using searchable dropdown
boxes. Unknown concepts and relations are added
through dedicated buttons. The text match fields
allow the user to search for concepts and relations
in the knowledge base. Intra-query operators are
added by clicking the AND, OR, and NOT but-
tons, whereas logical edges are created through the
designated button for connecting selected concepts
or relations (the order of selection determines the
edge direction). Selected items (and their associ-
ated edges) can be deleted by a click of a button.

Users can select items in the HGQL drawing by
clicking them while pressing the control key (they
will turn red if selected). Clicking them again
will deselect the items. Note that an item can
be dragged around by click-hold-moving it, and
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Figure 6: Selecting concepts for a search query in the HNP.

Figure 7: A search graph in the HNP.
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Figure 8: Ranked query results in the HNP.

Figure 9: An overview of the HGQL interface.
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panning the drawing is supported through click-
hold-moving the canvas. Zooming can be done by
scrolling up (zoom out) or down (zoom in). Edges
can be changed to logical or pattern edges by right-
clicking them and by selecting the appropriate type.
Operators can be changed into inter-query or intra-
query operators by using their right-click menu.
Queries can be saved or loaded using the buttons
at the bottom of the screen.
Additionally, users are able to specify a weight-

ing algorithm using radio buttons. A checkbox can
be ticked if ranked results are desired and testing
parameters can be fine-tuned. Once the query is
finished and execution preferences have been spec-
ified, the user can search the news repository by
clicking the ‘Execute Query’ button. After query
validation (using the rules described in Section 4.3)
and an HGQL to tSPARQL conversion, the query
is executed. After query execution, the system
switches to the Results tab. When converting an
HGQL query to tSPARQL, HNP splits the graph
in order to produce a list of subqueries which can
be processed individually. For every subquery, a
tSPARQL query is produced, executed, and – de-
pending on the inter-query operators used – added
to the list of results, which is presented to the user
after all sub-queries have been processed.
We illustrate the translation from HGQL to

tSPARQL by means of two examples, where we give
the HGQL queries and their tSPARQL equivalents.
If we consider the concepts-only HGQL query de-

picted in Figure 10, which fetches anything related
to companies and either the United States or Japan,
we obtain the following tSPARQL equivalent:

PREFIX news: <http://www.hermes.com/news.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/

22-rdf-syntax-ns#>
PREFIX kb: <http://www.hermes.com/

knowledgebase.owl#>
SELECT DISTINCT ?news
WHERE
{

?news rdf:type news:News.
?news news:relation ?relation1.
?news news:relation ?relation2.
?relation1 news:relatedTo ?concept1.
?relation2 news:relatedTo ?concept2.
FILTER(?concept1 = kb:Company &&

(?concept2 = kb:Japan ||
?concept2 = kb:United_States))

}

Figure 10: A concepts-only query in HGQL.

The ‘PREFIX’ commands allow for the use of
namespaces. ‘SELECT DISTINCT ?news’ indi-
cates that only unique news items will be selected as
a result, which is desirable in a news recommender.
The ‘WHERE’ clause specifies the conditions for
the news items to be selected. The most impor-
tant part of this translation is the ‘FILTER’ state-
ment; this allows the query to filter the results for
certain conditions. In this case we want one con-
cept to be Company and the other either Japan
or United_States. Two examples of returned news
items from our news ontology are:

Panasonic Slumps to $4 Billion Yearly Loss
AP - Panasonic Corp. slumped deep into the red
last fiscal year, joining the expanding club of big
Japanese brands shellshocked by their rapid descent
from cash cow to money loser. Panasonic reports
earnings based on U.S. accounting standards. In
trading Friday, shares of Panasonic jumped 4.8% to
1,455 yen on the TokyoStock Exchange, outpacing
the benchmark Nikkei 225 index’s 1.9% rise. The
results were released after trading closed.

Advertising: A Tech Company’s Campaign
to Burnish its Brand
Intel’s new campaign beginning Monday in the U.S.
is the company’s first to focus on the amusingly
weird, technology-focused culture of Intel and cele-
brates the company’s role in the future, rather than
the present. The tagline is “Sponsors of Tomor-
row,” and the ads highlight achievements of Intel
engineers in a humorous way. The campaign is In-
tel’s first that focuses on its brand rather than its
products and it is Intel’s most expensive campaign
since 2006.

Figure 11: A triple-based pattern query in HGQL.
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Our second example is depicted in Figure 11,
which is a triple-based pattern query. For this type
of query, a new class was added to the news ontol-
ogy, i.e., ‘Pattern’, which holds the subject, object,
and predicate of a pattern.
When this HGQL query is translated to

tSPARQL, this results in the following query:

PREFIX news: <http://www.hermes.com/news.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/

22-rdf-syntax-ns#>
PREFIX kb: <http://www.hermes.com/

knowledgebase.owl#>
SELECT DISTINCT ?news
WHERE
{

?news rdf:type news:News.
?news news:relation ?relation.
?relation news:relatedTo ?pattern.
?pattern news:subject ?subject.
?patern news:predicate ?predicate.
?pattern news:object ?object.
FILTER(?subject = kb:EBAY &&

?predicate = kb:Buys &&
?object = kb:PayPal)

}

Again distinct news items are returned, but this
time only the relations that relate to a pattern are
selected. For these items, the subject, predicate,
and object are selected and compared against the
subject, predicate and object from the query. As
can be seen this filter has conjunctive semantics
(&&), because the pattern has to match on all three
fields. An example of a returned news item is:

EBay to Buy its Rival PayPal
The online auction giant eBay announced plans to-
day to acquire PayPal, a rapidly growing start-up
that lets people make payments via e-mail. The
move will let eBay take a bigger share of many sales
made on its own site, and to expand its business to
earn money on tens of thousands of transactions
made elsewhere on the Internet.

7. Evaluation

In this section we evaluate the HGQL graphi-
cal query language and the proposed ranking algo-
rithms. First, we discuss the experimental setup,
after which the experimental results are presented.

7.1. Experimental Setup

For our experiments, we make use of a database
of 927 news items about various subjects in
our domain which is of financial nature. This
database is contained in the implementation avail-
able at http://people.few.eur.nl/fhogenboom/
hermes.html. Moreover, the expert-created OWL
ontology mentioned earlier serves as a basis for
concepts and relations. In order to evaluate our
query language and the performance of the pro-
posed ranking algorithms, we consider 10 different
queries, as depicted in Table 1.

We evaluate the graphical query language both
on quantitative and qualitative aspects against a
text-based alternative, i.e., SPARQL. First, we let
a small group of 4 test users with a background
in Computer Science and with experience in query
languages create the 10 queries described in Table 1
both in SPARQL and in HGQL and we measure
their creation times. Subsequently, we ask the users
about their experiences with both languages and
determine their preferences. The users are asked to
rate the languages on a 5-point Likert scale with re-
spect to their clarity, preciseness, conciseness, ease
of use, intuitiveness, expressiveness, interpretabil-
ity, insensitivity for mistakes, and on their confi-
dence in the generated results. Additionally, the
users are encouraged to rate the implementation of
HGQL in terms of clarity, ease of use, intuitiveness,
and efficiency.

The proposed ranking algorithm, i.e., the ex-
tended Boolean model (Rank (eB)), is also eval-
uated based on the query list (displayed in Table 1)
using a small but different group of test users. We
consulted 5 test users who have a Computer Science
background and who are familiar with Semantic
Web technologies and Information Retrieval tech-
niques in order to create a golden standard using
a majority voting scheme. As the query topics are
rather general, no domain experts are required, and
the choice of test users yields a high quality data set
due to their former experiences in annotating docu-
ments. It should be noted that while we have used
only simple concepts in our queries, we do not loose
in generality for our experiments, because complex
concepts are merely sequences of three simple con-
cepts that behave as any other concept.

The ranking algorithm is compared to 3 other
methods for document and query weight calcula-
tion, i.e., the traditional TF-IDF weights (Rank
(tfc.tfc)), the TF-IDF model with logarithmic
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ID Query
Q1 (Microsoft ∨ (Yahoo ∧ Google)) ∧ ¬United States
Q2 (Software ∨ DOTNET ∨ Programming ∨ Networking) ∧ (Facebook ∨ Twitter ∨ Yahoo)
Q3 (Steve Ballmer ∨ Steve Jobs ∨ Meg Whitman ∨ Terry Semel ∨ Bruce Chizen ∨ Eric Schmidt ∨

Larry Page) ∧ (Google ∨ Microsoft ∨ Yahoo ∨ Apple)
Q4 European Central Bank ∨ BankOfAmerica ∨ (Europe ∧ NASDAQ ∧ ¬Google) ∧ ¬Software
Q5 (AOL ∧ ¬United Kingdom) ∨ ((Microsoft ∨ Ebay) ∧ Google ∧ ¬iPhone ∧ ¬Adobe)
Q6 (Microprocessor ∨ Networking ∨ Computer hardware) ∧ ¬(United States ∨ Google ∨ Apple ∨

Microsoft)
Q7 (Google ∧ Microsoft ∧ ¬(Computer ∨ Europe)) ∨ (Ebay ∧ ¬United States)
Q8 (Europe ∨ United States) ∧ (Saab ∨ Fiat ∨ Volkswagen ∨ Audi ∨ MercedesBenz ∨ Mercedes ∨

Lexus ∨ Ford ∨ Cadillac) ∧ ¬Africa
Q9 (Bank ∨ Federal Bank ∨ Commercial Bank) ∧ New York Stock Exchange ∧ ¬Asia ∧ ¬Europe
Q10 (TiVo ∨ Adobe ∨ RedHat ∨ Sun ∨ Dell ∨ Cisco ∨ Oracle) ∧ (Microsoft ∨ Apple) ∧ ¬iPhone

Table 1: Evaluation queries.

weights (Rank (lxc.ltc)) as given in Equations (6)
and (7), and the TF-IDF model with a combination
of the document length and the average document
length for length normalization (Rank (Lnu.ltu)),
as given in Equations (8) and (9). This way, we
compare our proposed method against a classic
model (TF-IDF) as a baseline reference, and 2 ex-
tensions from the literature that have proven to out-
perform TF-IDF [28, 30]. The calculations for the
different possibilities of concept presence in docu-
ments and queries are shown in Table 2.
The ranking algorithms are evaluated by means

of two measures. The first measure is the precision
for the first 10 documents in our results list. For n
different queries we calculate the number of relevant
news items in the top ten ranked results. This is
referred to as the ‘Mean Precision @ 10’ (MP@10),
and is computed as

MP@10 = 1
n

n∑
i=1

ni

10 , (18)

where n is the number of queries and ni is the num-
ber of relevant documents in the first 10 results of
the ranked list for query i.

The second measure that is employed for eval-
uating the ranking algorithms is the Mean Aver-
age Precision (MAP), which provides a single-figure
measure of quality across all recall levels. The Av-
erage Precision (AP) is the average of the precision
values obtained for the set of top k documents in
the search results before each relevant document is
retrieved for a certain query. We take the mean of
this value from n different queries. The MAP can
be computed as follows:

MAP = 1
n

n∑
i=1

1
mi

mj∑
k=1

k

rdmk

, (19)

where {d1, ..., dmi} is the set of relevant documents
for query i, mi represents the number of relevant
documents for query i, and rdmk

denotes the rank
of document dmk

in the ranked list.
Next, we analyze the precision/recall graph av-

eraged over the different queries. Here, for fixed
recall values, we determine the precision for each of
the ranking algorithms. Significance of these results
is assessed through a one-tailed two-sample paired
Student t-test, where we measure whether the one

Document Weight Query Weight
Concept Concept Concept Concept Concept
present absent present absent negated

Rank(eB) 1 -1 1 0 -1
Rank(tfc.tfc) tfc.tfc -1 tfc.tfc 0 -1 × tfc.tfc
Rank(lxc.ltc) lxc.ltc -1 lxc.ltc 0 -1 × lxc.ltc
Rank(Lnu.ltu) Lnu.ltu -1 Lnu.ltu 0 -1 × Lnu.ltu

Table 2: Document weight calculation.
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Language
Criteria SPARQL HGQL

Clear 3 5
Precise 5 5
Concise 3 4

Easy to use 3 4
Intuitive 3 4

Expressive 4 4
Quickly interpretable 3 5

Insensitive for mistakes 2 4
Result confidence 3 4

Overall 3 4

Table 3: Qualitative evaluation of SPARQL and HGQL us-
ing a 5-point Likert scale, where 1 represents disagree and 5
represents agree.

Tool
Criteria HGQL

Clear 3
Easy to use 2

Intuitive 3
Efficient 3
Overall 3

Table 4: Qualitative evaluation of HGQL implementation
in the HNP using a 5-point Likert scale, where 1 represents
disagree and 5 represents agree.

method has a larger mean precision than the other,
using a significance level α of 0.05.

Last, we analyze the scalability of our approach
by measuring the average processing times (in mil-
liseconds) for the evaluation queries (excluding in-
dexing). News indexing is not relevant here, as this
can be done before the user poses his/her query. We
distinguish between the average processing time for
validating the HGQL queries, the average conver-
sion time from valid HGQL queries to tSPARQL
queries, and the average time it takes the soft-
ware to execute the generated tSPARQL queries
and fetching the results. Execution times are mea-
sured on a user system running an Intel Core i7-
3770 CPU at stock speed (3.40GHz) using 16.0GB
of RAM.

7.2. Experimental Results
When comparing HGQL against its text-based

alternative, SPARQL, we asked the user to rate
both languages with respect to various criteria. The
results are displayed in Table 3. Overall, the test
users clearly favour HGQL over SPARQL. Accord-
ing to the users, HGQL is much clearer and easier

Time (seconds)
Query SPARQL HGQL

Q1 449 155
Q2 170 125
Q3 229 165
Q4 283 194
Q5 220 199
Q6 189 133
Q7 171 166
Q8 202 175
Q9 144 112

Q10 150 146

Table 5: Creation times in seconds per query for their
SPARQL and HGQL variants.

to interpret. Also, the language is less sensitive for
mistakes, resulting in users having a higher confi-
dence in the returned results. With respect to ex-
pressiveness and preciseness, the users make no dis-
tinction between SPARQL and HGQL. Last, when
it comes to conciseness, ease of use, intuitiveness,
HGQL performs slightly better than SPARQL.

After constructing their queries, when asked
about their preference, 3 out of 4 users indicated
they preferred using HGQL over SPARQL, whereas
1 user did not have a specific preference for either
of the languages, mainly due to the HGQL imple-
mentation. As shown in Table 4, the users are less
enthusiastic about the implementation. Especially
the button-oriented design makes the tool less easy
to use, for instance when connecting nodes. On
the other hand, searching and adding concepts and
relations was intuitive and easy for all users.

Considering the creation times, it is evident that
creating HGQL queries with our current implemen-
tation takes less time than writing their equiva-
lent SPARQL queries. Table 5 shows the creation
times in seconds, and illustrates that for all queries,
HGQL outperforms SPARQL. On average, the per-
formance gain is 29%.

The results of the ranking algorithms are de-
picted in Table 6. This table demonstrates that
the extended Boolean model performs best on both
measures. The performance of Rank(lxc.ltc) is
a bit lower than the measured performance of
the extended Boolean model. Rank(tfc.tfc) and
Rank(Lnu.ltu) have the lowest scores, with the lat-
ter performing slightly better than the former.

Figure 12 shows the 11-point precision/recall
graph averaged over the 10 given queries. This

19



Measure Rank(eB) Rank(tfc.tfc) Rank(lxc.ltc) Rank(Lnu.ltu)
MP@10 0.850 0.470 0.730 0.480
MAP 0.874 0.467 0.694 0.572

Table 6: Evaluation results using user list benchmark.

Rank(eB) Rank(tfc.tfc) Rank(lxc.ltc) Rank(Lnu.ltu)
Rank(eB) 1.00 1.00 1.00

Rank(tfc.tfc) 0.00 0.00 0.00
Rank(lxc.ltc) 0.00 1.00 0.94

Rank(Lnu.ltu) 0.00 1.00 0.06

Table 7: One-tailed two-sample paired Student t-test p-values for the precision across all recall values for the Rank(eB),
Rank(tfc.tfc), Rank(lxc.ltc), and Rank(Lnu.ltu) ranking algorithms (H0 : µcolumn = µrow , H1 : µcolumn > µrow , α = 0.05).

graph underlines that the extended Boolean model
performs best across all recall levels. From the term
weighting methods, Rank(lxc.ltc) performs best for
most recall levels, while Rank(Lnu.ltu) performs
best on high recall levels. Rank(tfc.tfc) performs
poorly on all recall levels, which matches our ex-
pectations (as suggested in the literature).
When assessing the significance of precision on all

recall values, we obtain the p-values as denoted in
Table 7. From these values, we can deduce that
on average, the extended Boolean model signifi-
cantly outperforms the other ranking models. Also,
the TF-IDF model with logarithmic weights (Rank
(lxc.ltc)) significantly outperforms the basic TF-
IDF model, yet it does not significantly outperform
the TF-IDF model with a combination of the doc-
ument length and the average document length for
length normalization (Rank (Lnu.ltu)). Last, Rank
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Figure 12: The 11-point precision/recall graph with the user
list as benchmark.

(Lnu.ltu) significantly outperforms the basic TF-
IDF model, but fails to significantly outperform the
other ranking algorithms.

We have used different vector space model
weighting schemes for our ranking algorithm. The
previous results [28] that showed that it is better to
map the document and query vectors differently in
the vector space have been confirmed here, because
both Rank(lxc.ltc) and Rank(Lnu.ltu) perform bet-
ter than the basic TF-IDF model, Rank(tfc.tfc),
where the query and document vectors are mapped
equally. However, our experiments do not con-
firm earlier results regarding algorithms that use a
combination of the document length and the aver-
age document length for normalization compared
to algorithms using cosine normalization [30], as
Rank(Lnu.ltu) does not outperform Rank(lxc.ltc).

Last, in the 10 evaluated queries, the average
processing time (excluding indexing) was 0.2ms for
HGQL validation, 3.4ms for HGQL to tSPARQL
conversion, and 2826.4ms for tSPARQL execution.
From this, we can conclude that the process of vali-
dating and converting HGQL queries is not com-
putationally intensive, and hence is expected to
be scalable to larger systems. In contrast, the
tSPARQL execution times can be improved by em-
ploying other, more scalable SPARQL engines, but
this is outside the scope of our paper. A further
evaluation of the scalability is subject to future
work.

8. Conclusion

In this paper we have presented, implemented,
and evaluated the Hermes Graphical Query Lan-
guage (HGQL), which is a query language for news
items that makes use of graphical elements. The
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language is intended for use in the Hermes news
personalization framework, which is implemented
as a plug-in extendable Web-based tool, the Her-
mes News Portal (HNP). The HGQL plug-in in
the HNP enables users to define structured queries
without requiring any knowledge of the standard
(textual) query language, SPARQL, and makes use
of several building blocks, i.e., nodes (representing
concepts, relations, operators, and wildcards) and
edges (interconnecting nodes). The language dis-
tinguishes between queries consisting of only con-
cepts and logical operators, triple-based query pat-
terns, and combinations of these two types. HGQL
queries result in either a list of news items that com-
pletely match the query (the Boolean model), or a
ranked list of news items based on their relevance
to the specified query.
Our qualitative and quantitative evaluation of

the query language on a small group of users pro-
vided various insights. First, overall, the users
preferred HGQL over its text-based alternative,
SPARQL, mainly because of its clarity and inter-
pretability. The users were more moderate in their
judgement of the HGQL implementation, which
was not always easy to use. However, when compar-
ing query creation times, composing HGQL queries
still took roughly 29% less time than writing their
SPARQL equivalents.
Moreover, we addressed the performance of a pro-

posed ranking algorithm supporting negation op-
erators for queries consisting of conjunctive and
disjunctive operators. The ranking algorithm of
HGQL is based on a combination of the different
formulas for disjunctive and conjunctive queries of
the p-norm extended Boolean model. The nega-
tion operator is addressed by using negative weights
for query and document terms. Four different vec-
tor space model weighting algorithms have been
tested in this study, i.e., the extended Boolean
model Rank(eB), which uses document weights of
1, 0 and -1, and three different TF-IDF weight-
ing algorithms, Rank(tfc.tfc), Rank(lxc.ltc), and
Rank(Lnu.ltu).
Our study showed that the extended Boolean

model is performing best with a Mean Precision
at 10 (MP@10) of 0.85 and a Mean Average Preci-
sion (MAP) of 0.874. The lxc.ltc algorithm provides
the second best results with an MP@10 of 0.730
and a MAP of 0.694. The Lnu.ltu algorithm and
the tfc.tfc algorithm perform relatively poor with
an MP@10 of 0.480 and 0.470, respectively, and an
MAP of 0.572 and 0.467, respectively.

In future work, we would like to extend the rank-
ing algorithm by employing user-defined weights for
query concepts (already supported at the query lan-
guage level), by treating them in conjunction with
query weights (by for example scaling the original
weights with the user-defined weights). Another
research direction that we would like to pursue is
to fine-tune the HGQL implementation and to per-
form a user-based evaluation on a larger scale and
using a wider range of prospected user groups with
respect to the ease-of-use of the query language.
Last, we would like to assess the scalability of our
approach, and more specifically the query times of
our approach on larger ontologies on the one hand,
and for query sets of different complexities on the
other hand.
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