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ABSTRACT

We investigate the effects of adding procurement informa-
tion (component offer prices) to a sales-based economic re-
gime model, which is used for strategic, tactical, and op-
erational decision making in dynamic supply chains. The
performance of the regime model is evaluated through ex-
periments with the MinneTAC trading agent, which com-
petes in the TAC SCM game. We find that the new regime
model has a similar overall predictive performance as the
existing model. Regime switches are predicted more accu-
rately, whereas the prediction accuracy of dominant regimes
is slightly worse. However, by adding procurement infor-
mation, we have enriched the model and we have further
opportunities for applications in the procurement market,
such as procurement reserve pricing.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; K.4.4 [Computers and Society]: E-commerce

General Terms

Algorithms, economics, theory

Keywords

Economic regimes, machine learning, supply chain manage-
ment, TAC SCM, trading agent

1. INTRODUCTION

Because of the extremely competitive character of today’s
markets, it is important to gain insight into the dynamics
of supply chains and to research supply chain optimization
possibilities, both for individual elements in the chain, as
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well as for the chain as a whole. For instance, in correctly
predicting future market conditions (economic regimes [7])
lie competitive advantages, because one can anticipate on
upcoming scarcities or oversupply in the sales market by
adjusting procurement policies and sales prices in advance.
This can save for instance storage costs, and increase profits.

Therefore, one could benefit greatly from being able to
make tactical and strategic decisions in an uncertain market,
based on predicted and identified economic regimes. Com-
bining techniques from computer science with economic the-
ory to solve problems in economic environments contributes
to novel approaches to existing problems.

Ketter introduced an economic regime model, which is
based on sales information [7]. This model can be applied
to any market situation and to simulated markets. How-
ever, procurement information has not been used sofar for
identifying and predicting regimes, despite the fact that this
information could be valuable for determining economic re-
gimes, since it captures certain market characteristics. For
instance, an increase in the amount of components sold in
the procurement market could indicate an expected scarcity,
as manufacturers are building stocks.

We present an extension to the regime model as intro-
duced by Ketter, which is implemented in the MinneTAC
trading agent [4]. We investigate the effects of adding pro-
curement information to this model. The performance of
the regime model is evaluated through experiments on the
quality of regime probability predictions, and checking cor-
relations with existing market conditions.

The MinneTAC trading agent has competed for several
years in the Trading Agent Competition for Supply Chain
Management (TAC SCM). TAC SCM is an annual interna-
tional competition for designing trading agents for a simu-
lated personal computer (PC) supply chain [3].

TAC SCM has attracted researchers from all over the
world, because of its characteristics. The game environment
is designed in such a way that it contains many character-
istics that can be found in real-life supply chains, such as
the behavior of unpredictable opponents and interdependent
chain entities. The simulated supply chain of the TAC SCM
game offers many research opportunities into various sub-
jects, such as price setting strategies and prediction strate-
gies for competitor behavior or market characteristics and
developments. Because of its complexity and size, new sub-
competitions of the TAC SCM game have emerged over the



past few years, which focus on specific parts of supply chain
management, such as optimizing price predictions, which is
the main activity in the TAC SCM Prediction Challenge, or
the TAC SCM Procurement Challenge.

The supply chain of the TAC SCM games is simplified,
so that it only consists of suppliers, manufacturers, and cus-
tomers. In total, sixteen types of PCs are traded, which can
be classified into three market segments: the low-, mid-, and
high-range products, mainly differentiating in product price.
Products across the overall market share parts.

In TAC SCM, artificial trading agents compete with each
other in groups of six in two markets: the sales market for
customer orders and a procurement market for computer
components. The winner of each round of the game is the
agent that maximizes profits. Each game simulates 220 days,
which take fifteen real seconds each. Each day, agents have
to perform numerous tasks. The trading agents place bids,
buy components from suppliers, ensemble PCs in their fac-
tories, and sell products to customers (see Figure 1).
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Figure 1: Schematic overview of the basic concepts
of the TAC SCM game.

Even though trading agents are human-created, human
intervention is not allowed during a game, and thus agents
rely on their own calculations and predictions. The TAC
SCM takes care of generating supply and demand, gener-
ating market reports every twenty days with information
about shipments and orders, and providing banking, pro-
duction, and warehousing services.

The paper is organized as follows. First, we continue
with Section 2, which introduces the economic regime model
which is currently used in the MinneTAC agent. Subse-
quently, we define a new regime framework based on sales
and procurement information in Section 3. This new model
is evaluated in Section 4. Finally, conclusions are drawn and
future work is suggested in Section 5.

2. BACKGROUND AND RELATED WORK
ON REGIMES

MinneTAC’s sales decisions are largely dependent on the
regime identification and prediction modeled in the regime
model [11]. Every day, for each individual product, the prob-
abilities of current and future economic regimes are deter-
mined. Many decisions are based upon current and expected

regimes and their directly associated price density forecasts.
With the help of the current and future price density we are
able to predict market prices, market price trends, and the
customer acceptance probability for specific offers. Regimes
are used for both tactical and strategic decisions, such as
product pricing and production planning.

The regimes in the TAC SCM game can be considered as
a set of characteristics which apply to a certain period of
days. The identification and prediction of regimes is done
so that different behavior can be modeled for different situ-
ations, which is also referred to as a switching model. The
agent’s problems can be solved differently, depending on
their (regime) classification, thus influencing the accuracy
of the agent’s predictions and the amount of profit made.

Regimes are used in multiple contexts. One can apply
regimes in political and economic contexts. In general, a
regime refers to a set of conditions. In economic context,
regimes are also referred to as business cycle phases. These
phases are commonly used in macro-economic environments,
as is the case in [16].

However, in [7], regimes are applied in the micro-economic
environment of the TAC SCM game. This makes sense, since
an economic environment is simulated and one can capture
(economical) characteristics in economic regimes, enabling
an agent to reason (i.e., make tactical and strategic deci-
sions) based on certain market conditions.

Other applications of regimes can be found in electric-
ity markets. These markets often are oligopolies, which is
also the case in TAC SCM. Becker et al. and Mount et al.
both model spikes in electricity prices as a regimes switching
model, based on Markov switching models [2, 15].

Over the past decades, research has been into identifying
and predicting regimes, but also into regime changes. Re-
gime changes are important events in time series, in which
one can obtain strategic advantage if they are predicted or
identified correctly. Recently, Massey and Wu [13] empha-
size this importance of the ability to detect and respond to
regime shifts, as it is critical to economic success. If these
shifts are not detected, this could lead to lower profits. Also,
Massey et al. elaborate on the causes of under- and overre-
action to (predicted) regime shifts.

The foundation of research into regime shifts lies in 1989,
when Hamilton published a paper about modeling regime
changes using postwar U.S. real GNP as input [5]. Hamil-
ton used Markov matrices to observe these regime shifts,
by drawing probabilistic inference about whether and when
they may have occurred based on the observed behavior of
series.

The algorithms implemented in the regime model imple-
mented by the MinneTAC agent, which identifies and pre-
dicts economic regimes, are based on economic theory and
incorporate some adapted techniques. The model’s regimes
are identified as extreme scarcity, scarcity, a balanced situ-
ation, oversupply, and extreme oversupply [7]. As stated by
Ketter, five regimes are used. We define the regime set as:

R = {ES,S,B,0,EO0} . (1)

Each day of the game, the regime probability distribution
is determined and a regime prediction is made. Thus, each
regime Ry in set RVk =1,2,..., M (where M = 5) has a
certain likelihood to hold as dominant regime. The regime
probabilities in set R sum up to 1 and the regime with the
highest probability is considered as the dominant regime.



Currently, the regime model identifies and predicts eco-
nomic regimes based on yesterday’s normalized mean (sales)
price [9] for an arbitrary day d, which is also referred to as
np,_;, as well as on quantities. Also, for some predictions,
the entire history of normalized mean sales prices is used.
The mean price is defined as the mid-range price. The prob-
lem is that in supply chains, data for the day itself is not
available, and thus identification is done based on histori-
cal information, whereas prediction is done for day d up to
planning horizon h (usually twenty days).

The data the model is based on is normalized, as normal-
ization enables easy computing. The range of the variable
is fixed and thus known beforehand. Furthermore, it al-
lows for machine learning across markets, i.e., over different
products, which can be compared qualitatively, and it en-
ables whole market forecasts.

Regime identification is currently done by offline and on-
line machine learning. Offer acceptance probabilities associ-
ated with given product prices (approximated using a Gaus-
sian Mixture Model [17]), derived from observable historical
and current sales market data, are clustered offline using the
K-Means algorithm [12], which yields distinguishable statis-
tical patterns (clusters). These clusters are labeled with the
proper regimes after statistical research using correlations.
Regime probabilities, which are indicative of how market
conditions are, are determined by calculating the normal-
ized price density of all clusters, given sales prices.

There are several techniques for predicting regimes, each
of which is most suitable for a specific time span. Today’s
regimes can be predicted based on exponentially smoothed
price predictions, as extensively elaborated in [10]. Short-
term regime prediction for tactical decision making is done
by using a Markov prediction process. This process is based
on the last normalized smoothed mid-range price. To this
end, Markov transition matrices, which are created offline
(i-e., not in the game) by a counting process over past games,
are being used. Long-term regime prediction is done by
using a Markov correction-prediction process. This process
is almost equal to the short-term regime prediction, but is
based on all normalized smoothed mid-range prices up and
until the previous day, instead of just the last normalized
smoothed mid-range price.

3. EXTENDING THE REGIME IDENTIFI-
CATION AND PREDICTION PROCESS

As there is no procurement information used in the re-
gime model that is discussed in the previous section, we
introduce an extended version of the regime model as intro-
duced by Ketter et al. [11], using a simple model to illus-
trate the different computational steps. Our model differ-
entiates from the model introduced in [11] in the fact that
it is based on procurement information, and not solely on
sales information. We apply the information gain metric [1]
to a data set containing procurement information on prices,
quantities, offers, orders, and requests for quotation gath-
ered from historical game data' in order to be able to deter-

'Data set contains 2007 Semi-Finals games played on the
SICS tach server (IDs: 9321-9328), 2007 Finals games
played on the SICS tac3 server (IDs: 7306-7313), 2008
Semi-Finals games played on the University of Minnesota’s
(UMN) tac02 server (IDs: 761-769), and 2008 Finals games
played on the UMN tac01 server (IDs: 792-800).

mine which procurement variable adds the most information
to the model. The next section continues with discussing the
information gain metric.

3.1 Information Gain

The information gain is an entropy-based metric that in-
dicates how much better we can predict a specific target by
knowing certain features. When applied to our model so
that the metric fits our needs, the dominant regime is se-
lected as target variable and several procurement variables
are used as features. According to Mitchell [14], the entropy
is a commonly used measure in information theory, which
characterizes the purity of an arbitrary collection of exam-
ples. Let W be a collection of game results. Then, numW
is the number of possible values of W (i.e., regimes) and
P (w) represents the probability that W takes on value w.
Assuming a uniform probability distribution, P (w) is equal
to the proportion of W belonging to class w. The entropy
of a collection of game results, entropy (W), is defined as

numW

entropy (W) = Z —P (w)log, P (w) . (2)

When we set V' to be an attribute (procurement variable),
numV the number of possible values of V', P (v) the probabil-
ity that V takes on value v, and P (w|v) the probability that
W takes on value w (given v), the entropy of a collection of
game results W given a specific attribute V, entropy (W|V),
is defined as

entropy (W|V) =

Z P (v) ( Z —P (w|v) logQP(w|v)) .3

v=1 w=1

With (2) and (3), the amount of information gained on
outcome W from attribute V', gain (W, V'), can be calculated
as

gain (W, V) = entropy (W) — entropy (W|V) . (4)

Here, the entropy of a collection of game results W given an
attribute V' is subtracted from the entropy of W. Table 1
follows from the application of the information gain metric
to several procurement variables using our data set. Note
that the higher the score, the more information the variable
adds to the model.

Variable Gain

Offer price 0.7393
Order price 0.5400
RFQ lead time 0.5106
RFQ reserve price 0.4909

Ratio orders / offers  0.4555

Order quantity 0.4310
RFQ quantity 0.3901
Demand 0.3833
Offer quantity 0.3174

Table 1: Information gain scores for several procure-
ment variables.

The latter table shows that component offer prices (recal-
culated on a per-product basis) are most likely to improve
the predictive capabilities of the regime model. Therefore,



we add these component offer prices, to which we refer to as
op, to the existing regime model. These prices result from
all requests for quotation in a TAC SCM game.

3.2 Regime Model Variables

As both regime identification and prediction are based on
normalized sales prices, this section introduces a mathemat-
ical formulation of the normalized price np for product g,
np,, on day d. The normalized price is calculated as

price,
npg = numPartsg ’ (5)

asmCostg + >, nomPartCostg, ;

using the product price price,, the product assembly costs
asmCosty, and the nominal manufacturing costs for each
component j belonging to product g, nomPartCostg,;, re-
spectively.

The estimated normalized mean price, which is used for re-
gime identification and prediction, can be volatile and lacks
information on trends. Therefore, (exponential) smooth-
ing can be applied, resulting in yesterday’s exponentially
smoothed normalized minimum and maximum prices, i.e.,
npy; and npyT. Equations (6) through (8) show how the
exponentially smoothed normalized minimum prices are cal-
culated, using a Brown linear exponential smoother, where
« is a smoothing factor determined by a hill-climbing pro-
cedure.

o | o
W = acnpf (1 a) WYY . (6)
iy = oy + (-, ()
PR i i

i = 2wy — ®)

Here, two price components are smoothed separately, after
which both components are combined. This way, changes in
the mean and trend can be captured. Brown linear exponen-
tial smoothing is applied, since the trend as well as the mean
vary over time. The calculation of np;"] is done by analogy
with (6) through (8). Using the equations we have intro-
duced previously, yesterday’s exponentially smoothed nor-
malized price on an arbitrary day d can be calculated. This
is done by averaging yesterday’s exponentially smoothed
normalized minimum and maximum prices:

i + iy .
IV

We extend the regime model with the mean component
offer price op for product g, op,, on day d, such that

numS numCgy
o Zs:l Zc:l Opg,s,c

numOp,

Npg_; =

op, ; (10)
where numS refers to the number of suppliers, numCy refers
to the number of components for product g, and numOp,,
represents the number of entries of the procurement variable.
Thus, the mean component offer price is calculated by means
of a counting process over all component prices.

Because we would like the variable to include some infor-
mation about other preceding days as well, so that it repre-
sents a trend instead of an event, we apply an exponential
smoother to the variable. The smoothed value of yesterday’s
product-based component offer price, op,_1, is calculated as
shown in (11), where 8 represents a smoothing factor and is
determined using a hill-climbing procedure:

OP4_1 = f-0ps_1 + (1 =) 0pg_s - (11)

Smoothing is done by taking a certain percentage of yes-
terday’s value of op. Then, the remaining percentage is
taken of the previous (smoothed) value of variable op, i.e.,
the day before yesterday’s value, after which both values are
added. This is a less complex way of smoothing than applies
for the normalized mean sales price, though it still smoothes
out the variable’s possible volatility.

3.3 Regime Identification

The existing regime model is based on a Gaussian Mix-
ture Model (GMM) [17] with a fixed number (N) of Gaus-
sian components. A GMM is used, since it is able to ap-
proximate arbitrary density functions. Also, a GMM is a
semi-parametric approach which allows for fast computing
and uses less memory than other approaches [11]. In the
current regime model, fixed means, p;, which are equally
distributed, and variances, o2, where i is used as an index
to point to a component, Vi = 1,2,..., N. The fixed means
and variances are chosen so that adjacent Gaussians are two
standard deviations apart [10], are used. This might lead
to good results when fitting a model on one dimension, but
after adding a dimension to the model, fixed means and vari-
ances might prevent the GMM to reach a good fit. There-
fore, we do not constrain the means and variances for now.

As is the case with the current model, we apply the Ex-
pectation-Maximization algorithm to determine the Gaus-
sian components of the GMM and their prior probabilities,
P (¢;). The Gaussian components are, unlike the compo-
nents of the current model, based on both np and op. For
now, the number of Gaussian components, N, is equal to 3,
because this helps visualizing and explaining the main con-
cepts of the model. Note that at this moment, we are not
optimizing the model yet, so setting N at 3 has no conse-
quences for optimization later on.

The bivariate density of the normalized mean sales and
offer price, p (np Nop), is defined as shown in (12).

N
p(npnop) =Y P(G)p(npnop|G),
=1

Vi=1,2,...,N. (12)

This density is equal to the sum of all Gaussian compo-
nents p (np Nop|¢;) multiplied by their prior probabilities
P (¢;). We define a typical two-dimensional Gaussian com-
ponent as

p (np Nopl|¢;) = p (np N op|pinp; N Hop; N Tnp, N Top,)

-~ (“I’_ani) 4 (OP—Hopi)
— Ae 2035, 202 7

i (13)
where A is the amplitude of the Gaussian density, pnp, and
[op, are the means of the i-th Gaussian on the normalized
mean price and mean offer price axes, and oyp, and oop, are
their respective standard deviations.

Figure 2 shows plots of a two-dimensional GMM created
using a training set? and the equations discussed above. For
sake of illustration, the model contains three Gaussian com-
ponents, which — in contrast to the existing regime model —

2Training set contains 2007 Semi-Finals games played on
the SICS tach server (IDs: 9323-9327), 2007 Finals games
played on the SICS tac3 server (IDs: 7308-7312), 2008 Semi-
Finals games played on the UMN tac02 server (IDs: 763—
768), and 2008 Finals games played on the UMN tac01 server
(IDs: 794-799).



Gaussian Mixture Model (Projection)

0.14 ;] P p(nproplz,)
0.12 ; P )p(nproplC,)
o1 / P(Cyp(nproplCy)
’é.‘ ’ ! - =~ p(nprop)
¢ oos ! s
5006 N A
0.04 g s
0.02 3
0.4 0.6 08 1

np

(a)

Gaussian Mixture Model

Gaussian Mixture Model (Projection)

I p(nprop)| 0.14 . : P(C,)p(npropIC,)
012 ' P(&,)p(nproplc,)
N : 4P p(mproplcy)
I~ - = *p(nprop)
& 008 ; s
g
< o0s ; g
0.04 K K
3 “
0.02 M
200 250 300 350

op

()

Figure 2: A two-dimensional GMM based on np and op, using three Gaussian components, where (a) and
(c¢) show projections of the Gaussian components used in the model demonstrated in (b). Each individual
Gaussian has its own density function, and combining these densities results into a single price density.

do not have fixed means and variances, and is trained with
a maximum of fifteen hundred iterations on data on the low
product segment. Experiments show that using less itera-
tions does not guarantee a well fit or converged model. Fig-
ures 2(a) and 2(c) show projections of the individual Gaus-
sians and the density of the normalized mean sales price and
mean offer price onto the axes of both variables. To give a
proper understanding of the characteristics of the density,
this density is shown as a surface in Figure 2(b).

In order to find patterns in these probabilities, we need to
calculate to which extent each of the probabilities is a mem-
ber of each Gaussian component. The posterior probability
for each Gaussian component, referred to as P ((;|np N op),
follows from (12) after applying Bayes’ rule. The resulting
posterior probability can be denoted as shown in (14).

P (¢;)p (np Nop|¢:)
P in n = )
(Gl (rop) S P(¢)p(mpnopl¢))

Vi=1,2,...,N. (14)

Equation (14) applies for each Gaussian, and thus the vec-
tor of posterior probabilities for the two-dimensional Gaus-
sian Mixture Model is equal to the vector described in (15):

n(np Nop) = [P (¢ilnpNop),...,P(CynpNop)] . (15)

For each combination of normalized mean prices and com-
ponent offer prices, we can calculate 1 (np Nop) using the
fitted Gaussian Mixture Model.

We need to find clusters within the posterior probabilities,
as they contain data points where the in-group similarity is
higher than the out-group similarity. These clusters can be
linked to regimes, because they each describe certain condi-
tions and characteristics. Clustering the posterior probabili-
ties in M clusters is done using the same algorithm as in the
current regime model, i.e., K-Means clustering. We tested
different clustering algorithms, such as spectral clustering,
which resulted in similar clusters.

Clustering is done in fifteen replicates, using a maximum
of one hundred iterations. Experiments show that this al-
lows the algorithm to converge nicely on our data set. The
squared Euclidean distance measure is used to measure dis-
tances to the cluster centers for each data point. Figure 3
shows results of applying K-Means clustering to the GMM
we have fit to our data on low-range products with three
clusters. A clear separation between clusters is visible.

We link the cluster centers P ({|Rk) to regimes, but these
clusters do not tell us which cluster represents which re-
gime. However, this is not important for understanding
the framework. Let us assume we know how to assign the
proper regime label to each cluster. Then we can rewrite
p (np Nop|¢;) by analogy with (12) in a form that shows the
dependence of the normalized sales price and mean compo-
nent offer price on the regime Ry.

N
p(mpnop|Ry) = P(G|Rk)p(npnoplCi),
i=1

Vk=1,2,....,M. (16)

In (16), P ((i|Rk) refers to the N by M matrix resulting
from the K-Means algorithm, and p (np N op|¢i) refers to the
individual Gaussians. When applying Bayes’ rule, we obtain
the probability of regime Ri dependent on the sales and offer
prices, as defined in (17).

P (Ry) p (np Nop|Ry)
S M P (R;)p(npnop|R;)
Vk=1,2,....,M. (17)

P (RgnpNop) =

Figure 4 shows a plot of the regime probabilities (given
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Figure 3: Three identified regime clusters in
the posterior probabilities P (¢;lnpNop) of a two-
dimensional GMM.



normalized sales price and component offer price) for prod-
ucts of the low segment, resulting from a Gaussian Mixture
Model and clustering its posterior probabilities in three clus-
ters. We observe that under different conditions, different
regimes are dominant, as different clusters have high prob-
abilities for different combinations of component offer and
sales order prices. Thus, each identified regime is dominant
for certain combinations of both variables the model is based
on.

Regime probabilities can be calculated for different com-
binations of sales prices and procurement-side offer prices.
We choose fifty normalized mean prices and fifty mean offer
prices and calculate the regime probabilities per cluster for
each combination of both variables. Values of a variable are
equally distant from each other and range from the mini-
mum value of the variable in the data set to its maximum
value. This results in M fifty-by-fifty regime probability ma-
trices. With these settings, we have reasonably fine-grained
models with which we can interpolate easily.

Now that we have defined a new regime model for iden-
tifying regimes offline — by adding a procurement variable,
i.e., offer prices — we can update the online regime identi-
fication. There is no direct need to change the algorithm
which is currently used. However, we do need to add our
procurement variable, so that the online identified regime
R\T on an arbitrary game day d is dependent on yesterday’s
(i.e., d — 1) exponentially smoothed normalized mean price
np,_; and yesterday’s exponentially smoothed component
offer price op,_;. The result is shown in (18).

R, s.t. r = argmax P(Ry|op, , Nopy ;).  (18)

1<k<M

The regime probabilities can be estimated online using
each regime’s fifty-by-fifty probability matrix. Instead of
the one-dimensional linear interpolation which is currently
used, two-dimensional linear interpolation should be used in
the new regime model. Determining the dominant regime
remains unchanged, and thus the dominant regime is still
equal to the regimes with the highest probability.

Regime Probabilities
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Figure 4: Regime probabilities P (Rx|npNop) for
products of the low segment.

One can conclude that in general, the regime identifica-
tion still works similar to the current regime (identification)
model. However, a dimension has been added to the Gaus-
sian Mixture Model, causing differently structured probabil-
ity densities as well as regime clusters. This requires refor-
mulating the entire regime identification model.

3.4 Regime Prediction

In Section 2, we introduced three techniques for regime
prediction, each of which has its own characteristics and op-
timal time span to predict regimes for. Exponential smooth-
ing can be applied to predict today’s regime, whereas a
Markov prediction process can be used for predicting short-
term regimes (e.g., up to ten days in the future). A Markov
correction-prediction process is most suitable for predicting
long-term regimes. We define long-term predictions as pre-
dictions for up to twenty days in the future. The upper
bound (or planning horizon h) is set to twenty days, be-
cause a new market report becomes available every twenty
days and production scheduling is set up every day for the
next twenty days. This possibly leads to new or more accu-
rate insights in future developments.

3.4.1 Exponential Smoother Process

The exponential smoother regime prediction process is
more reactive to the current market condition than any
other method, because the exponential smoother process
takes yesterday’s information (normalized mean sales price)
as input. This information is corrected (smoothed) with in-
formation on preceding days to reduce volatility.

The prediction process calculates a trend, tNr?inl, in the
minimum normalized mean sales price by using (6) and (7).
The calculation is shown in (19), where - is used as a smooth-
ing factor:

- mi i —~ min’ —~ min”’/
o ﬁ (npd_1 —npy; ) . (19)

_ The exponentially smoothed maximum normalized trend,
try o, is calculated in a similar way. Using the minimum
and maximum trends, the mid-range trend of the sales price
~ 1
(trg”1) can be calculated as
t;}min + tt:i'max
trP, = st T rdel (20)
2

Using yesterday’s value and the mid-range trend of sales
prices, one can estimate the value of sales prices n days in
the future as shown in (21), where h is the planning horizon:

NPy, =0pg_y + (L+n) -try",, Yn=0,1,....,h. (21)

The horizon h has a maximum value of twenty days, and
since the exponential smoothing process can be applied best
for predicting today’s regime, h is equal to zero for this
process.

Now that we have defined a way to predict future val-
ues of np, we can also formulate a way to predict future
values of op. This calculation is different from what we
have discussed for np, because of the fact that the pro-
curement variable (i.e., component offer prices) represents
a mean value and we do not have minimum and maximum
values at hand. Also, different smoothing is applied to com-
ponent offer prices than to sales prices, which means the
two Brown linear exponential smoothing components used



for calculating the sales price trend are not available for our
procurement variable.

We calculate the trend of 6p,_;, trg;, as shown in (22).
Here, the trend is equal to the difference between yester-
day’s (exponentially smoothed) component offer price and
the smoothed offer price of the day before yesterday.

&321 = 6\15d—1 - 6\5(1—2 . (22)

Then, future values for n days into the future up to plan-
ning horizon h are calculated similar to future values of np,
as shown in (23). Here, the calculated trend is added 1+ n
times to the last known value of the component offer prices.
We express the future values of op mathematically as

6\f)d+n:6\15d71+(1+n)'{:}3517 vn:oala"'7h' (23)

Now that we have future values for day d-+n of np and op,
the probability for each regime (given sales and offer prices)
for n days in the future can be calculated similar to (17):

P (ék‘iﬁad-kn n 6Iv)d+n> =
p (ﬁf)d+n n 6f’d+n|§k) P (Rk)

S 3 P (Bun NPl By ) P (Ry)
Vk=1,2,...,M. (24)

Here, the density of np,,, and op,,, dependent on re-
gime Ry is calculated using (16) by marginalizing over the
individual Gaussians and cluster centers, as shown in (25).

N
p (ﬁf)d-&-n N ﬁ\f)d-kn'Rk) = Zp (ﬁ\f)d-kn N fl\f’d+n|<l) :
i=1
P (Gi|Ry) - (25)

3.4.2 Markov Processes

Making short-term and long-term regime predictions can
be done using Markov prediction and correction-prediction
processes [6]. In contrast to the exponential smoother pro-
cess where future prices are predicted, resulting indirectly in
predictions of future regimes, regimes are predicted directly.
Markov processes are less responsive to current market sit-
uations, as they also take into account a history of events.

For short-term regime predictions, a Markov prediction
process is used. This process is based on the last price mea-
surement and on a Markov transition matrix, referred to
as T (ratn|ra). The latter matrix is created by means of a
counting process on offline data and contains posterior prob-
abilities of transitioning to regime 744, on day d+n (i.e., n
days into the future), given rq4, which is the current regime.

Note that for Markov processes, we introduce the sym-
bol r for denoting regimes, to emphasize that we are not
looking at the individual regimes in the way we were look-
ing at them until now, because there is a focus shift. Now,
the regimes represent rows and columns in a Markov tran-
sition matrix and we use probability vectors combined with
transition matrices, instead of single regime probabilities.

Ketter et al. distinguish between two types of Markov
predictions: n-day prediction and repeated one-day predic-
tion. The first type is an interval prediction, where for each
day m up to planning horizon h a Markov transition ma-
trix is computed offline (per product, or at whatever level
of detail the regime model is defined), whereas the second

type only needs one Markov transition matrix (per product).
This matrix is repeated n times up to planning horizon h.

The calculation of the n-day prediction for n days ahead
is performed recursively as

—

P("/:dJrn‘ﬁBdfl ﬂaf)dfl) =

Z Z {ﬁ(?d—l\ﬁf)d_l Nopy_1)

Td+n Td—1
To (rasnlra-1) },
Vn=0,1,...,h, (26)

where the previous (identified or predicted) posterior regime
probabilities dependent on the normalized mean sales prices
and normalized mean component offer prices are multiplied
with the applicable Markov transition matrix.

Hence, predictions for today (i.e., n is equal to zero) are
based on the regime probabilities resulting from the regime
identification of day d — 1, while predictions for n days in
the future are done recursively. The regime probabilities re-
sulting from identification, i.e., P(F4_1|0py_, N 0P, ), are
obtained with (17). The same principles apply to the calcu-
lation of the repeated one-day prediction, as shown in (27).
However, as we already explained, only one transition matrix
is used, To (r4|rd—1), which is repeated n times for predic-
tions of n days in the future.

P(Ta4n|npy_y NOPy_y) =

S Y {Paalib, Ny )

Td+n Td—1

-

To (Td|7“d—1)},

o«
Il

0
Vn=0,1,...,

>

(27)

There is an assumption in the repeated one-day predic-
tion, i.e., in a time span of multiple days, the transition
probabilities remain the same. A shortcoming of repeating
matrices is the fact that the distribution of probabilities in
the transition matrices will converge to a stationary distri-
bution after repeating the matrix a number of times. For
one-day predictions, this will occur sooner than for n-day
predictions, simply because for every prediction for n days
up to planning horizon h, the matrix should be repeated n
times, whereas the n-day predictions have different matrices
for each prediction and therefore no repeating occurs. As we
want to avoid the risk of converging too soon, we prefer the
n-day predictions over the repeated one-day predictions.

Long-term predictions are made using a Markov correc-
tion-prediction process. The latter process is almost similar
to the Markov prediction process we already discussed. The
difference is that the long-term prediction process is modeled
based on the entire history of prices, instead of just the last
price measurement.

Hence, we need to extend the probability of regime 74_;
dependent on np,_; and op,_; to also incorporate the en-
tire history of the values of np and op. This correction is
done by applying a recursive Bayesian update to the iden-
tified regime probabilities. Then, predictions for today are
based on the corrected regime probabilities on day d — 1,
while predictions for n days in the future are done recur-
sively. Equation (28) defines the n-day variant of the Markov
correction-prediction process.
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Figure 5: Overview of the dominant regimes during a TAC SCM game, together with the course of the
normalized mean sales price and other economic identifiers, i.e., finished goods and factory utilization.

ﬁ(?d+n| {ﬁ\f)la . '71’/1\15d—1} N {6\{)17' . 76\f)d—1}) =

...y {ﬁ(m,q {8y, .., APy, } N

Td+4n rd—1
{6\1317 ey 6\15(1—1}) Ty, (Td+n|7"d71)},

Vn=0,1,...,h. (28)

The same principles apply to the calculation of the re-
peated one-day correction-prediction. Again, the difference
is the usage of the Markov transition matrices.

ﬁ (?d+7l| {rTﬁla - '7ﬁT)d—1} N {6517 s 76f)d—1}) =

DS {ﬁ(?d_q{@l,...,@d_l}m

Td4n Td—1

{OAI/)17~~~76\I/)L171}) ' HTO (Td‘rd—l)},

Vn=0,1,...,h. (29)

Note that the Markov transition matrices which are being
used in (28) and (29) (Tn (ratn|ra—1)¥n = 0,1,...,h and
To (ra|ra—1), respectively) are the same matrices as used
in (26) and (27). Furthermore, the prediction algorithms
used are similar as well.

4. PERFORMANCE EVALUATION

Initial offline experiments show that a five-regime model is
preferred over a three-regime model, as the regimes are iden-
tified and predicted more accurately. In these experiments,
we train regime models using our training data, after which
the performance is evaluated using a test set®.

3Test set contains 2007 Semi-Finals games played on the
SICS tach server (IDs: 9321, 9322, 9328), 2007 Finals games
played on the SICS tac3 server (IDs: 7306, 7307, 7313), 2008
Semi-Finals games played on the UMN tac02 server (IDs:
761, 762, 769), and 2008 Finals games played on the UMN
tac01 server (IDs: 792, 793, 800).

4.1 Regime Identification Evaluation

Each model is evaluated on several aspects. First of all,
correlations between identified dominant regime and eco-
nomic regime identifiers, such as factory utilization and fin-
ished goods, are evaluated to test the feasibility of the clus-
ters that have been found. Also entropies are considered,
since they indicate the confidence of the model about its
outcomes. Subsequently, the feasibility of the course of re-
gime probabilities over game time is evaluated.

The best performing regime model is configured with five
regimes and ten Gaussian components, with which we con-
tinue our experiments. Figure 6 shows an example of the
course of identified regime probabilities through an arbitrary
TAC SCM game of a typical agent in the mid-range product
segment, when using five regimes and ten Gaussians. Re-
gimes are clearly dominant for a certain time and regimes
do not switch too often, which is also visible in Figure 5.
Here, the daily dominant regimes of the same game are dis-
played, together with the course of the normalized mean
sales price and some other economic identifiers.

Regime labels are assigned to the cluster centers by means
of correlation studies, of which the results are shown in Fig-
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Figure 6: Course of identified regime probabilities
over game time in an arbitrary TAC SCM game.
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ure 7. In these studies, seventy-five hundred data points
drawn from the training set are used to calculate the Pear-
son correlation between the identified dominant regime and
economic regime identifiers, such as factory utilization and
finished goods. This number of samples is large enough to
ensure p-values below 0.01. Characteristics of the clusters
are in line with the human interpretation of the regime def-
initions. For example, in a scarcity situation, there is a
shortage of finished goods, and sales prices are high.

4.2 Regime Prediction Evaluation

We evaluate how the agent would predict the regime prob-
abilities with our newly defined five-regime GMM based on
ten Gaussians using our test set that contains historical data,
and we compare these results to those of the current imple-
mentation of the regime model on the same test set. In our
experiments, we look at the three product segments we de-
fined earlier, i.e., the low-, mid-, and high-range segment,
to get a rough indication of the performance. This perfor-
mance is measured in terms of the percentage of correctly
predicted regimes and regime switch occurrences.

Regimes are predicted using a combination of the predic-
tion methods we have introduced previously. Today’s regime
probabilities are predicted using an exponential smoother
process. Short-term predictions, i.e., predictions up to ten
days into the future, are done using a Markov prediction
process. We choose to use the n-day variant because of
the reasons mentioned earlier. Finally, for long-term predic-
tions up to twenty days into the future, we apply a Markov
correction-prediction process.

Looking at the prediction performance of the selected re-
gime model (compared to the performance of the current
model), one can observe small improvements, as well as small
deteriorations. This observation is supported by Table 2.
Here, the accuracy measured in a percentage of correctly

predicted regimes and regime switches (within plus or mi-
nus two days). The table shows the performance of the new
model compared to the current model for three market seg-
ments (i.e., low-range, mid-range, and high-range products).
The score of the best performing model is printed bold.

Correct Market New model Existing model

Regime Low-range 46.43% 51.86%
Mid-range 40.63% 52.93%
High-range 40.48% 41.91%

"Time ] Low-range - 48.68% 52.78%
Mid-range 53.00% 43.44%
High-range  50.93% 46.30%

Table 2: Prediction performances of a two-
dimensional GMM with five clusters and ten in-
dividual Gaussians (new model) compared to the
performance of a one-dimensional five-cluster GMM
with sixteen individual Gaussians (existing model).

The differences between the scores of the existing model
as presented in Table 2 and the results presented in [8] can
be caused by the fact that Ketter et al. only apply a Markov
prediction process for each prediction. Furthermore, we ex-
periment on 2007 and 2008 data, which contains different
games than the ones used in [8]. This may result in mar-
ket conditions which are harder to predict, because agents
are getting more advanced and more competitive every year,
which causes other decision making and thus games could
have different characteristics.

On average, our model predicts regime switches more ac-
curately than the current model. This indicates that the
addition of procurement information does affect the predic-
tion performance positively. However, regimes are predicted
with a lower accuracy than the current model. Though over-
all, the differences between the performances are quite small,
and therefore we conclude that the addition of procurement
information in the proposed way does not affect the predic-
tion performance greatly.

However, it should be noted that with the new model, the
future behavior of two variables should be predicted, which
makes mistakes more likely. If the performance of the new
model is similar to the current model, it could mean that
the model is sufficiently feasible, since the model does not
perform worse. However, the model can only prove to be
improved during online experiments, i.e., by playing TAC
SCM games against competitors.

Despite the similar performances of the new and exist-
ing model, we cannot neglect the enrichment of the model
with new information. This means that when implement-
ing the new regime model into an agent and competing in a
real game, different regimes can be identified, which causes
different decisions to be made. Thus, decision making can
now be based on events in the procurement market as well,
making decisions more deliberate.

Our extension opens up opportunities for new applica-
tions, as we can also link the regime model to the procure-
ment market. Applying a solely sales-based regime model
to the procurement market might not be so powerful, be-
cause sales information could be a lagging indicator for the
procurement market, i.e., information extracted from sales
statistics resembles a situation of the procurement market
some while ago, instead of today’s situation. When adding



procurement information, we can actually infer something
about today’s procurement market.

Continuing, the new model is based on yesterday’s sales
and procurement information. However in real life, procure-
ment information could be a leading indicator for the sales
market. Since the regime model is applied in TAC SCM
games for predicting a price trend in the sales market, per-
formances could increase when models are based on data
associated with a few days earlier.

Furthermore, it is also possible to improve the model’s
performance by smoothing differently. In our new model, an
average value of the offer prices on a specific day is smoothed,
but data could also be smoothed by applying Brown linear
exponential smoothing to minimum and maximum values,
which should give more accurate results. Also, the calcu-
lated trend of the offer prices, which is used in the exponen-
tial smoother prediction process, is in reality only a rough
indication of the trend and tends to be a very nervous esti-
mation, which can lead to biased decisions.

Finally, no normalization is applied to procurement in-
formation, which could result in unwanted model behavior,
since the model is only trained for a certain offer price range.
It might be the case that during our experiments, prices ex-
ceed the minimum or maximum values the regime model is
trained for. Normalizing the data so that it stays within a
certain range could help improve the performance.

5.  CONCLUSIONS AND FUTURE WORK

We have investigated the effects of adding procurement
information, i.e., component offer prices, to a sales-based re-
gime model, which is used for predicting price density prob-
abilities in a simulated supply chain. Extending the regime
model has been done by adding a dimension to the Gaussian
Mixture Model which is at the core of the regime model.

The performance of the regime model has been evaluated
through experiments with the MinneTAC agent, which com-
petes in the TAC SCM game for several years. We find that
the new regime model has a similar overall predictive perfor-
mance as the existing model. Regime switches are predicted
more accurately, whereas the prediction accuracy of domi-
nant regimes is slightly worse.

However, by adding procurement information, we have
enriched the model and we expect the new regime model
to yield good results once implemented in the MinneTAC
agent. The agent will able to make decisions based on more
information that is indicative of how market conditions are.
Also, our model seems to be as robust as the current model,
and thus, maybe new types of decision making come within
reach. Furthermore, we see opportunities for applications in
the procurement market, which is worth further research.

For further research, we suggest investigating the use of
other data. For instance, more or different procurement in-
formation can serve as a basis to the model. Not only using
other data or time-delayed data, but also applying other
smoothing techniques to offer prices fall within the scope of
the meaning of different procurement information.
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